Skip to main content
Log in

Quantum-Chemical Study of Synthesized Ultrafine Bi2O3–B2O3–BaO Glasses

  • NANODISPERSED SYSTEMS AND MATERIALS
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The object of the study is ultrafine bismuth barium borate glasses 20Bi2O3хBaO–(80−х)B2O3, х = 5, 10, or 20 mol % BaO, synthesized using a unique version of the sol–gel method and holding promise for fabricating functional crystalline glass ceramics, in particular, based on yttrium aluminum garnet. A DSC analysis of the obtained charge material with 0.5 µm spherical particles revealed their glassy state at temperatures of 450–475°C. The presence of glass in particles of such a small size allows the use of the so-called cluster approximation in a quantum-chemical study of the geometric and electronic structure of glasses by the DFT/UB3LYP/LanL2DZ method. Calculated IR absorption spectra are compared with the experimental spectra of the obtained dispersed samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Lee, Y.I., Lee, J.H., Hong, S.H., and Park, Y., Solid State Ionics, 2004, vol. 175, nos. 1–4, p. 687.

    Article  CAS  Google Scholar 

  2. Hasu, H., Ito, T., Hase, H., Matsuoka, J., and Kamiya, K., J. Non-Cryst. Solids, 1996, vol. 204, no. 1, p. 78.

    Article  Google Scholar 

  3. Becker, P., Cryst. Res. Technol., 2003, vol. 38, no. 1, p. 74.

    Article  CAS  Google Scholar 

  4. Ehrt, D., Phys. Chem. Glasses, 2006, vol. 47, no. 6, p. 669.

    CAS  Google Scholar 

  5. Motke, S.G. and Yawale, S.P., Bull. Mater. Sci., 2002, no. 25, p. 75.

  6. Hellwig, H., Liberity, J., and Bohaty, L., Solid State Commun., 1999, p. 249.

  7. Chen, C., Wu, B., Jiang, A., and You, G., Sci. Sin, Ser. B, 1985, vol. 26, p. 235.

    Google Scholar 

  8. Egorysheva, A.V. and Skorikov, V.M., Inorg. Mater., 2009, vol. 45, no. 13, p. 1461.

    Article  CAS  Google Scholar 

  9. Fedorov, P.P., Kokh, A.E., and Kononova, N.G., Russ. Chem. Rev., 2002, vol. 714, p. 651.

    Article  Google Scholar 

  10. Egorysheva, A.V., Volodin, V.D., and Skorikov, V.M., Inorg. Mater., 2008, vol. 44, no. 11, p. 1261.

    Article  CAS  Google Scholar 

  11. Dubuis, S., Messaddeq, S.H., Ledemi, Y., Côté, A., and Messaddeq, Y., Opt. Mater. Express, 2021, vol. 11, no. 8, p. 2560.

    Article  Google Scholar 

  12. Egorysheva, A.V., Burkov, V.I., Kargin, Yu.F., Plotnichenko, V.G., and Koltashev, V.V., Crystallogr. Rep., 2005, vol. 50, no. 1, p. 127.

    Article  CAS  Google Scholar 

  13. Li, L. and Cheng, L., J. Chem. Phys., 2013, vol. 138, p. 094312.

    Article  PubMed  Google Scholar 

  14. Plekhovich, A.D., Rostokina, E.E., Komshina, M.E., Balueva, K.V., Ignatova, K.F., and Kut’in, A.M., Inorg. Mater., 2022, vol. 58, no. 7, p. 736.

    Article  CAS  Google Scholar 

  15. Plekhovich, A.D., Kut’in, A.M., Rostokina, E.E., Komshina, M.E., Balueva, K.V., Ignatova, K.F., and Shiryaev, V.S., J. Non-Cryst. Solids, 2022, vol. 588, p. 121629.

    Article  CAS  Google Scholar 

  16. Gaussian 03, Revision A1, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., et al., Wallingford, CT: Gaussian. Inc., 2003.

  17. Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648.

    Article  CAS  Google Scholar 

  18. Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B: Condens. Matter, 1988, no. 37, p. 785.

  19. Miehlich, B., Savin, A., Stoll, H., and Preuss, H., Chem. Phys. Lett., 1989, vol. 157, p. 200.

  20. Srinivasaraghavan, R., Chandiramouli, R., Jeyaprakash, B.G., and Seshadri, S., Spectrochim. Acta, Part A, 2013, vol. 102, p. 242.

  21. Egorysheva, A.V., Skorikov, V.M., Volodin, V.D., Myslitskii, O.E., and Kargin, Yu.F., Russ. J. Inorg. Chem., 2006, vol. 51, no. 12, p. 1956.

  22. Krogh-Moe, J., J. Non-Cryst. Solids, 1969, vol. 1, p. 269.

    Article  CAS  Google Scholar 

  23. He, F., He, Z., Xie, J., and Li, Y., Am. J. Anal. Chem., 2014, vol. 5., no. 16, p. 1142.

    Article  CAS  Google Scholar 

  24. Marzouk, M.A., ElBatal, H.A., and Ezz ElDin, F.M., Silicon, 2014, vol. 5, no. 4, p. 283.

    Article  Google Scholar 

  25. Marzouk, M.A. and ElBatal, F.H., Appl. Phys. A, 2014, vol. 115, p. 903.

    Article  CAS  Google Scholar 

  26. Chen, F., J. Wuhan Univ. Technol.-Mater. Sci., 2009, vol. 24, p. 716.

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 20-73-10110.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Plekhovich.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plekhovich, S.D., Plekhovich, A.D., Kut’in, A.M. et al. Quantum-Chemical Study of Synthesized Ultrafine Bi2O3–B2O3–BaO Glasses. High Energy Chem 57, 444–450 (2023). https://doi.org/10.1134/S0018143923050107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143923050107

Keywords:

Navigation