Skip to main content
Log in

Effect of Bi2O3 on structural and optical properties of Li2O·PbO·Bi2O3·B2O3 glasses

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The quaternary glass system has a composition of 30Li2O·20PbO·xBi2O3·(50-x)B2O3 (where x = 0, 10, 20, 30, and 40 mol%) was fabricated by using the melt quench technique at the temperature 1100 °C. The broad haloes obtained by the XRD diffractograms confirm the amorphous nature of the samples. Density, molar volume, and crystalline volume were found to be increased depending on Bi2O3 concentration. Structural properties were studied with the help of FTIR spectroscopy in the range of 400–2000 cm−1. The analysis of IR spectra reveals the presence of octahedral [BiO6], [BO4], [PbO4], and tetrahedral [BiO3], [BO3] structural units in the present glasses. Increases in bismuth concentration result in the transformation of [BO3] structural units to [BO4] structural units. The presence of a sharp cutoff and broad transmission region make these glasses suitable for spectral devices. The cutoff wavelength, optical band gap, and Urbach’s energy were estimated using UV absorption spectra. The increase in cutoff wavelength and decrease in band gap with bismuth content can be associated with the rise in non-bridging oxygens. Urbach’s energy values revealed that the defect concentration could be controlled by the presence of Bi2O3 content in the present glass system. The values of optical parameters, viz., refractive index, molar refractivity, molar polarizability, electronic polarizability, optical basicity, and theoretical optical basicity, increase with Bi2O3 content. The high values of refractive index and low metallization criterion indicate that the studied glass system may be potentially used for non-linear optical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All the data analyzed in this work are included in this article.

References

  1. J. Dahiya, A. Hooda, A. Agarwal, S. Khasa, Tuneable colour flexibility in Dy3+ & Eu3+ co-doped lithium fluoride bismuth borate glass system for solid state lighting applications. J. Non-Cryst. Solids 576, 121237 (2022). https://doi.org/10.1016/j.jnoncrysol.2021.121237

    Article  CAS  Google Scholar 

  2. M. Bengisu, Borate glasses for scientific and industrial applications: a review. J. Mater. Sci. 51(5), 2199–2242 (2016). https://doi.org/10.1007/s10853-015-9537-4

    Article  CAS  Google Scholar 

  3. P. Yasaka, N. Pattanaboonmee, H.J. Kim, P. Limkitjaroenporn, J. Kaewkhao, Gamma radiation shielding and optical properties measurements of zinc bismuth borate glasses. Ann. Nucl. Energy 68, 4–9 (2014). https://doi.org/10.1016/j.anucene.2013.12.015

    Article  CAS  Google Scholar 

  4. I. Kashif, A. Abd El-Maboud, A. Ratep, Effect of Nd2O3 addition on structure and characterization of lead bismuth borate glass. Results. Phys. 4, 1–5 (2014). https://doi.org/10.1016/j.rinp.2013.11.002

    Article  Google Scholar 

  5. S.D. Kamath, A. Wagh, M.P. Ajithkumar, Composition dependent structural and thermal properties of SM2O3 Doped zinc fluoroborate glasses. Energy Res. J. 4(2), 52–58 (2013). https://doi.org/10.3844/erjsp.2013.52.58

    Article  Google Scholar 

  6. N. Deopa, A.S. Rao, Spectroscopic studies of Sm3+ ions activated lithium lead alumino borate glasses for visible luminescent device applications. Opt. Mater 72, 31–39 (2017). https://doi.org/10.1016/j.optmat.2017.04.067

    Article  CAS  Google Scholar 

  7. M. Purnima, S. Stalin, A. Edukondalu, M.A. Samee, S.K. Ahmmad, S. Rahman, Spectroscopic studies on Li2O–MgO–Bi2O3–B2O3 glasses. Chin. J. Phys. 66, 517–526 (2020). https://doi.org/10.1016/j.cjph.2020.05.031

    Article  CAS  Google Scholar 

  8. Sanjay, N. Kishore, A. Agarwal, I. Pal, S. Devi, R. Bala, Characterization and optical properties of MoO3-PbO-B2O3 semiconducting glasses. AIP Conf. Proceedings 1942, 140012 (2018). https://doi.org/10.1063/1.5029143

    Article  CAS  Google Scholar 

  9. A.I. Ismail, A. Samir, F. Ahmad, L.I. Soliman, A. Abdelghany, Spectroscopic studies and the effect of radiation of alkali borate glasses containing chromium ions. J. Non-Cryst. Solids 565, 120743 (2021). https://doi.org/10.1016/j.jnoncrysol.2021.120743

    Article  CAS  Google Scholar 

  10. N.N. Ahlawat, P. Aghmkar, N. Ahlawat, A. Agarwal, Monica, Rekha, structural study of TM doped alkali bismuth borate glasses. Adv. Mat. Lett. 4(1), 71–73 (2013). https://doi.org/10.5185/amlett.2013.icnano.252

    Article  CAS  Google Scholar 

  11. S.M. Kamil, A.A. Abul-Magd, W. El-Gammal, H.A. Saudi, Enhanced optical and structural features of Ni2+/La3+ hybrid borate glasses. Spectrochim. Acta A Mol. Biomol. Spectrosc. 267, 120569 (2022). https://doi.org/10.1016/j.saa.2021.120569

    Article  CAS  Google Scholar 

  12. M. Kaur, M.S. Saini, Synthesis and characterization of lithium borate glasses containing bismuth. Int. J. Adv. Res. Phys. Sci. 1(8), 1–8 (2014)

    Google Scholar 

  13. K.H. Mahmoud, Optical study of lithium–bismuth–borate glasses. Int. J. Appl. Ceram. Technol. 6(2), 279–285 (2009). https://doi.org/10.1111/j.1744-7402.2008.02268.x

    Article  CAS  Google Scholar 

  14. A.F. Wells, Structural inorganic chemistry, 4th edn. (Clarendon Press, Oxford, 1975)

    Google Scholar 

  15. H. Masai, Y. Takahashi, T. Fujiwara, T. Suzuki, Y. Ohishi, Correlation between near infrared emission and bismuth radical species of Bi2O3-containing aluminoborate glass. J. Appl. Phys. 106, 103523 (2009). https://doi.org/10.1063/1.3264631

    Article  CAS  Google Scholar 

  16. R. Bala, A. Agarwal, S. Sanghi, N. Singh, Effect of Bi2O3 on nonlinear optical properties of ZnO.Bi2O3.SiO2 glasses. Opt. Mater. 36, 352–356 (2013). https://doi.org/10.1016/j.opmat.2013.09.021

    Article  CAS  Google Scholar 

  17. K. Terashima, T. Shimoto, T. Yoko, Structure and nonlinear optical properties of PbO-Bi2O3-B2O3 glasses. Phys. Chem. Glas. 38, 211–217 (1997)

    CAS  Google Scholar 

  18. I.L. Opera, H. Hesse, K. Betzler, Optical properties of Bismuth borate glasses. Opt. Mater. 26(3), 235–237 (2004). https://doi.org/10.1016/j.optmat.2003.10.006

    Article  CAS  Google Scholar 

  19. I. Agarwal, S. Pal, M.P. Sanghi, Agarwal, Judd-Ofelt parameters and radiative properties of Sm3+ ions doped zinc bismuth borate glasses. Opt. mater. 32(2), 339–344 (2009). https://doi.org/10.1016/j.optmat.2009.08.012

    Article  CAS  Google Scholar 

  20. M.I. Sayyed, S.A.M. Issa, H.O. Tekin, Y.B. Saddeek, Comparative study of gamma-ray shielding and elastic properties of BaO–Bi2O3–B2O3 and ZnO–Bi2O3–B2O3 glass systems. Mater. Chem. Phys. 217, 11–22 (2018). https://doi.org/10.1016/j.matchemphys.2018.06.034

    Article  CAS  Google Scholar 

  21. A. Kumar, Gamma-ray shielding properties of PbO-Li2O-B2O3 glasses. Radiat. Phys. Chem. 136, 50–53 (2017). https://doi.org/10.1016/j.radphyschem.2017.03.023

    Article  CAS  Google Scholar 

  22. R. Nagaraju, B. Devaiah, L. Haritha, K.C. Sekhar, Md. Shareefuddin, M.A. Sayed, G. Lalitha, K.V. Kumar, Influence of CaF2 on spectroscopic studies of lead fluoro bismuth borate glasses doped with Cr3+ ions. J. Non-Cryst. Solids 560, 120705 (2021). https://doi.org/10.1016/j.jnoncrysol.2021.120705

    Article  CAS  Google Scholar 

  23. S. Stalin, D.K. Gaikwad, M.S. Al-Buriahi, C. Srinivasu, S.A. Ahmmad, H.O. Tekin, S. Rahman, Influence of Bi2O3/WO3 substitution on the optical, mechanical, chemical durability and gamma ray shielding properties of lithium-borate glasses. Ceram. Int. 47(4), 5286–5299 (2020). https://doi.org/10.1016/j.ceramint.2020.10.109

    Article  CAS  Google Scholar 

  24. M. Subhadra, S. Sulochana, P. Kistaiah, Effect of V2O5 content on physical and optical properties of lithium bismuth borate glasses. Mater. Today: Proc. 5, 26417–26423 (2018). https://doi.org/10.1016/j.matpr.2018.08.095

    Article  CAS  Google Scholar 

  25. S. Rani, S. Sanghi, N. Ahlawat, A. Agarwal, Influence of Bi2O3 on thermal, structural and dielectric properties of lithium zinc bismuth borate glasses. J. Alloys Compd. 597, 110–118 (2014). https://doi.org/10.1016/j.jallcom.2014.01.211

    Article  CAS  Google Scholar 

  26. E.M. Abou Hussein, T.D. Abd Elaziz, N.A. El-Alaily, Effect of gamma radiation on some optical and electrical properties of lithium bismuth silicate glasses. J Mater Sci: Mater Electron 30, 12054–12064 (2019). https://doi.org/10.1007/s10854-019-01563-y

    Article  CAS  Google Scholar 

  27. J. Bhemarajam, P. SyamPrasad, M. MohanBabu, M. Özcan, M. Prasad, Investigations on structural and optical properties of various modifier oxides (MO = ZnO, CdO, BaO, and PbO) containing bismuth borate lithium glasses. J. Compos. Sci. 5(12), 308 (2021). https://doi.org/10.3390/jcs5120308

    Article  CAS  Google Scholar 

  28. H.D. Prakash, S. Mahamuda, J.S. Alzahranii, P. Sailaja, K. Swapna, M. Venkateswarlu, A.S. Rao, Z.A. Alrowaili, I.O. Olarinoye, M.S. Al-Buriahi, Synthesis and characterization of B2O3-Bi2O3-SrO-Al2O3-PbO-Dy2O3 glass system: The role of Bi2O3/Dy2O3 on the optical, structural, and radiation absorption parameters. Mat. Res. Bull. 155, 111952 (2022). https://doi.org/10.1016/j.materresbull.2022.111952

    Article  CAS  Google Scholar 

  29. K.M. Katubi, I.O. Olarinoye, Z.A. Alrowaili, M.S. Al-Buriahi, Optical transmission, polarizability, and photon/neutron shielding properties of Bi2O3/MnO/B2O3 glass system. Optik 268, 169695 (2022). https://doi.org/10.1016/j.ijleo.2022.169695

    Article  CAS  Google Scholar 

  30. M.A. Alothman, A.M. Al-Baradi, S.B. Ahmed, R. Kurtullus, I.O. Olarinoye, T. Kavas, M.S. Al-Buriahi, Physical, optical, and ionizing radiation shielding parameters of Al(PO3)3-doped PbO-Bi2O3-B2O3 glass system. J Mater Sci: Mater Electron 32, 27744–27761 (2021). https://doi.org/10.1007/s10854-021-07157-x

    Article  CAS  Google Scholar 

  31. S. Chauhan, R. Bala, S. Rani, S. Gaur, Investigation of structural and optical properties of lithium lead bismuth silicate glasses. J. Mater Sci: Mater Electron 33(15), 12371–12383 (2022). https://doi.org/10.1007/s10854-022-08194-w

    Article  CAS  Google Scholar 

  32. R. Kaur, R.B. Rakesh, S.G. Mhatre, V. Bhatia, D. Kumar, H. Singh, S.P. Singh, A. Kumar, Physical, optical, structural and thermoluminescence behaviour of borosilicate glasses doped with trivalent neodymium ions. Opt. Mat. 17, 111109 (2021). https://doi.org/10.1016/j.optmat.2021.111109

    Article  CAS  Google Scholar 

  33. S. Thakur, V. Thakur, A. Kaur, L. Singh, Structural, optical and thermal properties of nickel doped bismuth borate glasses. J. Non-Crys. Solids 512, 60–71 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.02.012

    Article  CAS  Google Scholar 

  34. A. Yadav, M.S. Dahiya, A. Hooda, P. Chand, S. Khasa, Structural influence of mixed transition metal ions on lithium bismuth borate glasses. Solid State Sci. 70, 54–56 (2017). https://doi.org/10.1016/j.solidstatesciences.2017.06.011

    Article  CAS  Google Scholar 

  35. Y.B. Saddeek, E.R. Shaaban, S. El-Moustafa, H.M. Moustafa, Spectroscopic properties, electronic polarizability, and optical basicity of Bi2O3–Li2O–B2O3 glasses. Phys. B Condens. Matter. 403, 2399–2407 (2008). https://doi.org/10.1016/j.physb.2007.12.027

    Article  CAS  Google Scholar 

  36. M.S. Gaafar, S.Y. Marzouk, H.A. Zayed, L.I. Soliman, A.H. Serag El-Deen, Structural studies and mechanical properties of some borate glasses doped with different alkali and cobalt oxides. Curr. Appl. Phys. 13(1), 152–158 (2013). https://doi.org/10.1016/j.cap.2012.07.007

    Article  Google Scholar 

  37. P. Pascuta, L. Pop, S. Rada, M. Bosca, E. Culea, The local structure of bismuth borate glasses doped with europium ions evidenced by FT-IR spectroscopy. J Mater Sci: Mater Electron 19, 424–428 (2008). https://doi.org/10.1007/s10854-007-9359-5

    Article  CAS  Google Scholar 

  38. A.A. Soliman, E.M. Sakr, I. Kashif, The investigation of the influence of lead oxide on the formation and on the structure of lithium diborate glasses. Mater. Sci. Eng. B. 158(1–3), 30–34 (2009). https://doi.org/10.1016/j.mseb.2008.12.034

    Article  CAS  Google Scholar 

  39. Y. Cheng, H. Xiao, W. Guo, W. Guo, Structure and crystallization kinetics of Bi2O3–B2O3 glasses. Thermochim. Acta. 444(2), 173–178 (2006). https://doi.org/10.1016/j.tca.2006.03.016

    Article  CAS  Google Scholar 

  40. R.A. Elsad, A.M. Abdel-Aziz, E.M. Ahmed, Y.S. Rammah, F.I. El-Agawany, M.S. Shams, FT-IR, ultrasonic and dielectric characteristics of neodymium (III)/ erbium (III) lead-borate glasses: experimental studies. J Mater. Res. Technol. 13, 1363–1373 (2021). https://doi.org/10.1016/j.jmrt.2021.05.029

    Article  CAS  Google Scholar 

  41. M.A. Girsova, S.V. Firstov, T.V. Antropova, Structural and optical properties of the bismuth-containing quartz-like glasses. J. Phys: Conf. Ser. 541, 012022 (2014). https://doi.org/10.1088/1742-6596/541/1/012022

    Article  Google Scholar 

  42. S. El-Moustafa, Y.B. Saddeek, E.R. Shaaban, Structural and optical properties of lithium borobismuthate glasses. J. Phys. Chem. Solids. 69, 2281–2287 (2008). https://doi.org/10.1016/j.jpcs.2008.04.020

    Article  CAS  Google Scholar 

  43. A.A. Ali, Y.S. Rammah, R. El-Mallawany, D. Souri, FTIR and UV spectra of pentaternary borate glasses. Meas. J. Int. Meas. Confed. 105, 72–77 (2017). https://doi.org/10.1016/j.measurement.2017.04.010

    Article  Google Scholar 

  44. S. Sanghi, S. Duhan, A. Agarwal, P. Aghamakar, Study of structure and optical properties of Fe2O3·CaO·Bi2O3 glasses. J. Alloys Compd. 488(1), 454–458 (2009). https://doi.org/10.1016/j.jallcom.2009.09.009

    Article  CAS  Google Scholar 

  45. G. Gao, L. Hu, H. Fan, G. Wang, K. Li, S. Feng, S. Fan, H. Chen, Effect of Bi2O3 on physical, optical and structural properties of boron silicon bismuthate glasses. Opt. Mater. 32(1), 159–163 (2009). https://doi.org/10.1016/j.optmat.2009.07.005

    Article  CAS  Google Scholar 

  46. H. Feng, Z. Yuanyuan, X. Junlin, IR and Raman spectra properties of Bi2O3-ZnO-B2O3-BaO quaternion glass system. Prime Arch Chem 5, 1142–1150 (2020). https://doi.org/10.4236/ajac.2014.516121

    Article  CAS  Google Scholar 

  47. S.M. Abo-Naf, F.H. El-Batal, M.A. Azooz, Characterization of some glasses in the system SiO2, Na2O·RO by infrared spectroscopy. Mater. Chem. Phys. 77(3), 846–852 (2003). https://doi.org/10.1016/S0254-0584(02)00215-8

    Article  CAS  Google Scholar 

  48. A. Kumar, S.B. Rai, D.K. Rai, Effect of thermal neutron irradiation on Gd3+ ions doped in oxy fluoro borate glass: an infra-red study. Mater. Res. Bull. 38, 333–339 (2003). https://doi.org/10.1016/S0025-5408(02)01003-6

    Article  CAS  Google Scholar 

  49. A.S. Abu-Khadra, A.M. Taha, A.M. Abdel-Ghany, A.A. Abul-Magd, Effect of silver iodide (AgI) on structural and optical properties of cobalt doped lead-borate glasses. Ceram. Int. 47(18), 26271–26279 (2021). https://doi.org/10.1016/j.ceramint.2021.06.036

    Article  CAS  Google Scholar 

  50. K.S. Shaaban, E.A. AbdelWahab, E.R. Shaaban, E.S. Yousef, S.A. Mahmoud, Electronic polarizability, optical basicity, thermal, mechanical and optical investigations of (65B2O3–30Li2O–5Al2O3) glasses doped with titanate. J. Elect. Mater. 49, 2040–2049 (2020). https://doi.org/10.1007/s11664-019-07889-x

    Article  CAS  Google Scholar 

  51. N. Elkhoshkhany, N. Samir, E.S. Yousef, Structural, thermal and optical properties of oxy-fluoro borotellurite glasses. J. Mater. Res. Technol. 9(3), 2946–2959 (2020). https://doi.org/10.1016/j.jmrt.2020.01.045

    Article  CAS  Google Scholar 

  52. L. Balachander, G. Ramadevudu, M. Shareefuddin, R. Sayanna, Y.C. Veenudhar, IR analysis of borate glasses containing three alkali oxides. Sci. Asia. 39, 278–283 (2013). https://doi.org/10.2306/scienceasia1513-1874.2013.39.278

    Article  CAS  Google Scholar 

  53. M. Ganguli, K.J. Rao, Structural role of PbO in Li2O–PbO–B2O3 glasses. J. Solid State Chem. 145(1), 65–76 (1999). https://doi.org/10.1006/jssc.1999.8221

    Article  CAS  Google Scholar 

  54. C.E. Stone, A.C. Wright, R.N. Sinclair, S.A. Feller, M. Affatigato, D.L. Hogan, N.D. Nelson, C. Vira, Y.B. Dimitriev, E.M. Gattef, D. Ehrt, Structure of bismuth borate glasses. Phys. Chem. Glasses 41(6), 409–412 (2000)

    CAS  Google Scholar 

  55. V. Sharma, S.P. Singh, G.S. Mudahar, K.S. Thind, Synthesis and characterization of cadmium containing sodium borate glasses. New J. Glass Ceram. 2(4), 128–132 (2012). https://doi.org/10.4236/njgc.2012.24022

    Article  CAS  Google Scholar 

  56. V.D. Raut, A.V. Deshpande, N.S. Satpute, Study on the modification in physical and optical properties of lithium bismuth borate glasses with vanadium oxide addition. Res. Trend. Chal. Phy. Sci. 5, 140–149 (2021). https://doi.org/10.9734/bpi/rtcps/v5/1928C

    Article  Google Scholar 

  57. N. Elkhoshkhany, R. Abbas, R. El-Mallawany, A.J. Fraih, Optical properties of quaternary TeO2–ZnO–Nb2O5–Gd2O3 glasses. Ceram. Int. 40(9), 14477–14481 (2014). https://doi.org/10.1016/j.ceramint.2014.07.006

    Article  CAS  Google Scholar 

  58. M. Abdel-Baki, F. Abdel-Wahab, A. Radi, F. El-Diasty, Factors affecting optical dispersion in borate glass systems. J. Phys. Chem. Solids 68, 1457–1470 (2007). https://doi.org/10.1016/j.jpcs.2007.03.026

    Article  CAS  Google Scholar 

  59. K.F. Herzfeld, On atomic properties which make an element a metal. Phys. Rev. J. 29, 701–705 (1927). https://doi.org/10.1103/PhysRev.29.701

    Article  CAS  Google Scholar 

  60. V. Dimitrov, T. Komatsu, An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength. J. Univ. Chem. Technol. Metall. 45(3), 219–250 (2010)

    CAS  Google Scholar 

  61. S.L. SrinivasaRao, G. Ramadevudu, Md. Shareefuddin, A. Hameed, M.N. Chary, M.L. Rao, Optical properties of alkaline earth borate glasses. Int. J. Eng. Sci. Technol. 4(4), 25–35 (2012). https://doi.org/10.4314/ijest.v4i4.3

    Article  Google Scholar 

  62. V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides. J. Appl. Phys. 79, 1736 (1996). https://doi.org/10.1063/1.360962

    Article  CAS  Google Scholar 

  63. J.A. Duffy, A review of optical basicity and its applications to oxidic systems. Geochim. Cosmochim. Acta 57(16), 3961–3970 (1993). https://doi.org/10.1016/0016-7037(93)90346-X

    Article  CAS  Google Scholar 

  64. J.A. Duffy, Electronic polarisability and related properties of the oxide ion. Phys. Chem. Glasses 30, 1–4 (1989)

    CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

SC contributed to conceptualization, methodology, data curation, and writing of the original draft. RB contributed to supervision, methodology, and writing, reviewing & editing of the manuscript. SG performed reviewing and editing of the manuscript. SR contributed to data curation, reviewing, and editing of the manuscript.

Corresponding author

Correspondence to Rajni Bala.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The contents of our research paper “Effect of Bi2O3 on structural and optical properties of Li2O·PbO·Bi2O3·B2O3 glasses” are new and we have synthesized these samples for the first time using melt quenching technique. It is certified that the work is completely original and has not been published/ submitted for publication elsewhere. We will follow all the norms of the publication, like copyrights, etc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, S., Bala, R., Gaur, S. et al. Effect of Bi2O3 on structural and optical properties of Li2O·PbO·Bi2O3·B2O3 glasses. J Mater Sci: Mater Electron 33, 22835–22850 (2022). https://doi.org/10.1007/s10854-022-09050-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09050-7

Navigation