Skip to main content
Log in

Development of a Kinetic Model for the Direct Oxidation of Benzene to Phenol by Oxygen in Dielectric Barrier Discharge

  • PLASMA CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

A simplified model of the process of benzene oxidation by oxygen in a dielectric barrier discharge has been developed. A kinetic scheme of oxidation is proposed that reflects the real chemistry of the process. The simulation results confirm the earlier assumptions about the main stages of the benzene oxidation process with oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Fridman, A., Plasma Chemistry, New York: Cambridge University Press, 2012.

    Google Scholar 

  2. Samoilovich, V.G., Gibalov, V.I., and Kozlov, K.V., Fizicheskaya khimiya bar’ernogo razryada (Physical Chemistry of Dielectric Barrier Discharge), Moscow: Izd. Moskovskogo Univ., 1989.

  3. Kogelschatz, U., Plasma Chem. Plasma Process., 2003, vol. 23, no. 1, p. 1.

    Article  CAS  Google Scholar 

  4. Kudryashov, S.V., Ryabov, A.Yu., Sirotkina, E.E., and Shchegoleva, G.S., High Energy Chem., 2003, vol. 37, no. 3, p. 184.

    Article  CAS  Google Scholar 

  5. Kudryashov, S., Ryabov, A., and Shchyogoleva, G., J. Phys. D: Appl. Phys., 2016, vol. 49, p. 025205.

    Article  Google Scholar 

  6. Ochered’ko, A.N., Kudryashov, S.V., Ryabov, A.Yu., and Leshchik, A.V., High Energy Chem., 2022, vol. 56, no. 4, p. 284.

    Article  Google Scholar 

  7. Kraus, M., Egli, W., Haffner, K., et al., Phys. Chem. Chem. Phys., 2002, vol. 4, no. 4, p. 668.

    Article  CAS  Google Scholar 

  8. Lovascio, S., Blin-Simiand, N., Magne, L., et al., Plasma Chem. Plasma Process., 2015, vol. 35, no. 2, p. 279.

    Article  CAS  Google Scholar 

  9. Istadi, I. and Amin, N.A.S., Chem. Eng. Sci., 2007, vol. 62, no. 23, p. 6568.

    Article  CAS  Google Scholar 

  10. Yang, Y., Plasma Chem. Plasma Process., 2003, vol. 23, no. 2, p. 283.

    Article  CAS  Google Scholar 

  11. Non-Thermal Plasma Techniques for Pollution Control, Part B: Electron Beam and Electrical Discharge Processing, Penetrante, B.M. and Schultheis, S.E., Eds., Berlin: Springer, 1993.

    Google Scholar 

  12. Viehland Database. http:www.lxcat.net. Accessed April 25, 2023.

  13. Bugaev, S.P., Kozyrev, A.V., Kuvshinov, V.A., et al., Plasma Chem. Plasma Process., 1998, vol. 18, no. 2, p. 247.

    Article  CAS  Google Scholar 

  14. Kovács, T., Plasma Chem. Plasma Process., 2009, vol. 30, no. 1, p. 207.

    Article  Google Scholar 

  15. Hagelaar, G.J.M. and Pitchford, L.C., Plasma Sources Sci., 2005, vol. 14, no. 4, p. 722.

    Article  CAS  Google Scholar 

  16. Kintecus. www.kintecus.org. Accessed April 25, 2023.

  17. Taatjes, C.A., Osborn, D.L., Selby, T.M., et al., J. Phys. Chem. A, 2010, vol. 114, no. 9, p. 3355.

    Article  CAS  PubMed  Google Scholar 

  18. Tanaka, K., Ando, M., Sakamoto, Y., et al., Int. J. Chem. Kinet., 2012, vol. 44, p. 41.

    Article  CAS  Google Scholar 

  19. Atkinson, R., Baulch, D.L., Cox, R.A., et al., Atmos. Chem. Phys., 2004, vol. 4, no. 6, p. 1461.

    Article  CAS  Google Scholar 

  20. Turányi, T., Nagy, T., Zsély, I.G., et al., Int. J. Chem. Kinet., 2012, vol. 44, no. 5, p. 284.

    Article  Google Scholar 

  21. Atkinson, R., Baulch, D.L., Cox, R.A., et al., J. Phys. Chem. Ref. Data, 1989, vol. 18, no. 2, p. 881. 1.

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of the state assignment of the Institute of Petroleum Chemistry (Siberian Branch of the Russian Academy of Sciences), project no. FWRN-2021-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Ochered’ko.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ochered’ko, A.N., Leshchik, A.V., Kudryashov, S.V. et al. Development of a Kinetic Model for the Direct Oxidation of Benzene to Phenol by Oxygen in Dielectric Barrier Discharge. High Energy Chem 57, 436–439 (2023). https://doi.org/10.1134/S0018143923050089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143923050089

Keywords:

Navigation