Skip to main content
Log in

Direct Oxidation of Benzene to Phenol in a Dielectric-Barrier Discharge Reactor

  • PLASMA CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The feasibility of direct oxidation of benzene to phenol by oxygen or air in dielectric-barrier discharge (DBD) under conditions of effective removal of the products from the discharge operation zone is shown. It has been established that the control of the reactor temperature in the process of benzene oxidation in DBD plasma is a good practice for controlling both the benzene conversion and the product composition. A possible mechanism of the process is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Schmidt, R.J., Appl. Catal., A, 2005, vol. 280, no. 1, p. 89.

  2. Ascenzi, D., Franceschi, P., Guella, G., et al., J. Phys. Chem. A, 2006, vol. 110, no. 25, p. 7841.

    Article  CAS  Google Scholar 

  3. Dey, G.R., Sharma, A., Pushpa, K.K., et al., J. Hazard. Mater., 2010, vol. 178, nos. 1–3, p. 693.

    Article  CAS  Google Scholar 

  4. Franceschi, P., Guella, G., Scarduelli, G., et al., Plasma Process. Polym., 2007, vol. 4, no. 5, p. 548.

    Article  CAS  Google Scholar 

  5. Kudryashov, S.V., Ochered’ko, A.N., Ryabov, A.Yu., et al., Plasma Chem. Plasma Process., 2011, vol. 31, p. 649.

    Article  CAS  Google Scholar 

  6. Kudryashov, S.V., Ryabov, A.Yu., and Shchyogoleva, G.S., J. Phys. D: Appl. Phys., 2016, vol. 49, p. 025205.

    Article  Google Scholar 

  7. Kogelschatz, U., Plasma Chem. Plasma Process., 2003, vol. 23, no. 1, p. 1.

    Article  CAS  Google Scholar 

  8. Hagelaar, G.J.M. and Pitchford, L.C., Plasma Sources Sci., 2005, vol. 14, no. 4, p. 722.

    Article  CAS  Google Scholar 

  9. Viehland Database. http://www.lxcat.net.

  10. Sanches, I.P., Sugohara, R.T., Rosani, L., et al., J. Phys., B: At. Mol. Opt., 2008, vol. 41, no. 18. P. 185202.

    Google Scholar 

  11. Bettega, M., Winstead, C., and McKoy, V., J. Chem. Phys., 2000, vol. 112, no. 20, p. 8806.

    Article  CAS  Google Scholar 

  12. Cvetanovic, R.J., J. Phys. Chem. Ref. Data, 1987, vol. 16, p. 261.

    Article  CAS  Google Scholar 

  13. Taatjes, C.A., Osborn, D.L., Selby, T.M., et al., J. Phys. Chem. A, 2010, vol. 114, no. 9, p. 3355.

    Article  CAS  Google Scholar 

  14. Nguyen, T.L., Peeters, J., and Vereecken, L., J. Phys. Chem. A, 2007, vol. 111, no. 19, p. 3836.

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out within the framework of the state task of the Institute of Petroleum Chemistry of the Siberian Branch of the Russian Academy of Sciences, funded by the Ministry of Science and Higher Education of the Russian Federation, project no. FWRN-2021-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Ochered’ko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ochered’ko, A.N., Kudryashov, S.V., Ryabov, A.Y. et al. Direct Oxidation of Benzene to Phenol in a Dielectric-Barrier Discharge Reactor. High Energy Chem 56, 284–288 (2022). https://doi.org/10.1134/S0018143922040129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143922040129

Keywords:

Navigation