Skip to main content
Log in

Organosilicon-Based Hybrid Materials Produced Using Low Temperature Plasma

  • PLASMA CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

Published data on the effect of low-temperature plasma on polydimethylsiloxane have been analyzed. Changes in the contact properties, chemical structure, and morphology of the modified polymer surface have been revealed using modern research techniques (contact angle measurement, X-ray photoelectron spectroscopy, Fourier-transform IR spectroscopy, atomic force and scanning electron microscopy). It has been shown that modification by plasma results in the formation of a hybrid material that has the surface layer consisting mainly of silicon oxide. Plasma-enhanced chemical vapor deposition processes of hexamethyldisiloxane polymerization on various substrates are considered and the formation of similar hybrid materials containing a significant amount of silicon oxide is shown. Data on the use of such materials in biology, medicine, membranes, humidity sensors, and other fields of science and technology are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Faustini, M., Nicole, L., Ruiz-Hitzky, E., and Sanchez, C., Adv. Funct. Mater., 2018, vol. 28, no. 27, p. 1704158.

    Article  Google Scholar 

  2. De Freitas, A.S.M., Maciel, C.C., Rodrigues, J.S., Ribeiro, R.P., Delgado-Silva, A.O., and Rangel, E.C., Vacuum, 2021, vol. 194, p. 110556.

    Article  CAS  Google Scholar 

  3. Gilman, A.B., High Energy Chem., 2003, vol. 37, no. 1, p. 17.

    Article  CAS  Google Scholar 

  4. Wang, G., Li, A., Zhao, W., Xu, Z., Ma, Y., Zhang, F., Zhang, Y., Zhou, J., and He, Q., Adv. Mater. Interfaces, 2021, vol. 8, no. 1, p. 2001460.

    Article  Google Scholar 

  5. Guney, A., Kara, F., Ozgen, O., Aksoy, E.A., Hasirci, V., and Hasirci, N., Biomaterials Surface Science, Taubert, A., Mano, J.F., and Rodríguez-Cabello, J.C., Eds., Weinheim: Wiley–VCH, 2013, Ch. 5.

  6. Mercuri, L.G., Br. J. Oral Maxillofac. Surg., 2013, vol. 51, p. 584.

    Article  Google Scholar 

  7. Mera, G. and Ionescu, E. Silicon-containing preceramic polymers, Encyclopedia of Polymer Science and Technology, Mark, H.S., Ed., Hoboken, NJ: Wiley, 2013, 3rd ed.

    Google Scholar 

  8. Ibrahim, J., Al-Bataineh, S.A., Michelmore, A., and Whittle, J.D., Plasma Chem. Plasma Process., 2021, vol. 41, no. 1, p. 47.

    Article  CAS  Google Scholar 

  9. Mandracci, P., Ceruti, P., Ricciardi, C., Mussano, F., and Carossa, S., Chem. Vap. Depos., 2010, vol. 6, p. 29.

    Article  Google Scholar 

  10. Amerian, Meh., Amerian, Mah., Sameti, M., and Seyedjafari, E., J. Biomed. Mater. Res. A, 2019, vol. 107, no. 12, p. 2806.

    Article  CAS  Google Scholar 

  11. Jofre-Reche, J.A., Pulpytel, J., Fakhouri, H., Arefi-Khonsari, F., and Martın-Martınez, J.M., Plasma Process. Polym., 2016, vol. 13, p. 459.

    Article  CAS  Google Scholar 

  12. Wang, Z., Luo, Y., Zheng, F., Zhang, N., Yin, C., Li, J., He, C., Peng, X., Huang, Z., and Fang, P., Surf. Interface Anal., 2018, vol. 50, no. 8, p. 819.

    Article  CAS  Google Scholar 

  13. Zambov, L., Shamamian, V., Weidner, K., and Loboda, M., Chem. Vap. Depos., 2011, vol. 17, p. 253.

    Article  CAS  Google Scholar 

  14. Wrobel, A.M., Walkiewicz-Pietrzykowska, A., Uznanski, P., and Glebocki, B., Chem. Vap. Depos., 2013, vol. 19, p. 1.

    Article  Google Scholar 

  15. Wrobel, A.M., Uznanski, P., Walkiewicz-Pietrzykowska, A., Glebocki, B., and Bryszewska, E., Chem. Vap. Depos., 2015, vol. 21, p. 88.

    Article  CAS  Google Scholar 

  16. Supiot, P., Vivien, C., Blary, K., and Rouessac, V., Chem. Vap. Depos., 2011, vol. 17, p. 321.

    Article  CAS  Google Scholar 

  17. Supiot, P., Vivien, C., Granier, A., Bousquet, A., Mackova, A., Escaich, D., Clergereaux, R., Raynaud, P., Stryhal, Z., and Pavlik, J., Plasma Process. Polym., 2006, vol. 3, p. 100.

    Article  CAS  Google Scholar 

  18. Topka, K.C., Diallo, B., Samelor, D., Laloo, R., Sadowski, D., Genevois, C., Sauvage, T., Senocq, F., Vergnes, H., Turq, V., Pellerin, N., Caussat, B., and Vahlas, C., Surf. Coat. Technol., 2021, vol. 407, p. 126762.

    Article  CAS  Google Scholar 

  19. Lycans, R.M., Higgins, C.B., Tanner, M.S., Blough, E.R., and Day, B.S., Colloids Surf., B, 2014, vol. 116, p. 687.

    Article  CAS  Google Scholar 

  20. Parvin, A., Mirzadeh, H., and Khorasani, M.T., J. Appl. Polym. Sci., 2008, vol. 107, no. 4, p. 2343.

    Article  CAS  Google Scholar 

  21. Kaczorowski, W., Szymanski, W., Batory, D., and Niedzielski, P., J. Appl. Polym. Sci., 2015, vol. 132, no. 11, p. 41635.

    Google Scholar 

  22. Krishna, Y., Sheridan, C.M., Kent, D.L., Grierson, I., and Williams, R.L., J. Biomed. Mater. Res. A, 2007, vol. 80, no. 3, p. 669.

    Article  Google Scholar 

  23. Aerts, S., Vanhulsel, A., Buekenhoudt, A., Weyten, H., Kuypers, S., Chen, H., Bryjak, M., Gevers, L.E.M., Vankelecom, I.F.J., and Jacobs, P.A., J. Membr. Sci., 2006, vol. 275, p. 212.

    Article  CAS  Google Scholar 

  24. Chen, I.-J. and Lindner, E., Langmuir, 2007, vol. 23, no. 6, p. 3118.

    Article  CAS  Google Scholar 

  25. Jofre-Reche, J.A., Pulpytel, J., Fakhouri, H., Arefi-Khonsari, F., and Martın-Martınez, J.M., Plasma Process. Polym., 2016, vol. 13, no. 4, p. 459.

    Article  CAS  Google Scholar 

  26. Lauk-Dubitskii, S.E., Astrelina, T.A., Brumberg, V.A., Fedyunin, A.A., Kamyshnikov, O.Yu., Vostrukhin, S.V., Gordeev, A.V., Paklina, O.V., Kobzeva, I.V., Nikitina, V.A., Suchkova, Yu.B., Usupzhanova, D.Yu., Brunchukov, V.A., Karaseva, T.V., Bushmanov, A.Yu., and Samoilov, A.S., Saratov. Nauchno-Med. Zh., 2016, vol. 12, no. 4, p. 662.

  27. Múgica-Vidal, R., Mercadal-Guillén, J., Alba-Elias, F., and Sainz-García, E., Plasma Process. Polym., 2021, vol. 18, no. 9, 2100046.

    Article  Google Scholar 

  28. Wrobel, A.M., Uznanski, P., Walkiewicz-Pietrzykowska, A., Glebocki, B., and Bryszewska, E., Chem. Vap. Depos., 2015, vol. 21, p. 88.

    Article  CAS  Google Scholar 

  29. Wrobel, A.M., Uznanski, P., and Walkiewicz-Pietrzykowska, A., Chem. Vap. Depos., 2015, vol. 21, p. 307.

    Article  CAS  Google Scholar 

  30. Wrobel, A.M., Walkiewicz-Pietrzykowska, A., Uznanski, P., and Glebocki, B., Chem. Vap. Depos., 2013, vol. 19, p. 1.

    Article  Google Scholar 

  31. Supiot, P., Vivien, C., Blary, K., and Rouessac, V., Chem. Vap. Depos., 2011, vol. 17, p. 321.

    Article  CAS  Google Scholar 

  32. De Freitas, A.S.M., Maciel, C.C., Rodrigues, J.S., Ribeiro, R.P., Delgado-Silva, A.O., and Rangel, E.C., Vacuum, 2021, vol. 194, p. 110556.

    Article  CAS  Google Scholar 

  33. Ibrahim, J., Al-Bataineh, S.A., Michelmore, A., and Whittle, J.D., Plasma Chem. Plasma Process., 2021, vol. 41, no. 1, p. 47.

    Article  CAS  Google Scholar 

  34. Mobarakeh, L.F., Jafari, R., and Farzaneh, M., Appl. Surf. Sci., 2013, vol. 284, p. 459.

    Article  Google Scholar 

  35. Wrobel, A.M., Wickramanayaka, S., Kitamura, K., Nakanishi, Y., and Hatanaka, Y., Chem. Vap. Depos., 2000, vol. 6, no. 6, p. 315.

    Article  CAS  Google Scholar 

  36. Sifuentes-Nieves, I., Hernández-Hernández, E., Neira-Velázquez, G., Morales-Sánchez, E., Mendez-Montealvo, G., and Velazquez, G., Int. J. Biol. Macromol., 2019, vol. 124, p. 651.

    Article  CAS  Google Scholar 

  37. Wang, Y., Zhang, J., and Shen, X., Mater. Chem. Phys., 2006, vol. 96, p. 498.

    Article  CAS  Google Scholar 

  38. Gosar, Ž., Kovač, J., Mozetič, M., Primc, G., Vesel, A., and Zaplotnik, R., Plasma Chem. Plasma Process., 2020, vol. 40, no. 1, p. 25.

    Article  CAS  Google Scholar 

  39. Shafaei, S., Yang, L., Rudolph, M., and Awakowicz, P., Plasma Chem. Plasma Process., 2020, vol. 40, p. 607.

    Article  CAS  Google Scholar 

  40. Supiot, P., Vivien, C., Granier, A., Bousquet, A., Mackova, A., Escaich, D., Clergereaux, R., Raynaud, P., Stryhal, Z., and Pavlik, J., Plasma Process. Polym., 2006, vol. 3, p. 100.

    Article  CAS  Google Scholar 

  41. Hegemann, D., Bulbul, E., Hanselmann, B., Schutz, U., Amberg, M., and Gaiser, S., Plasma Process. Polym., 2020, vol. 18, no. 2, p. 2000176.

    Article  Google Scholar 

  42. Chaiwong, C., Rachtanapun, P., Sarapirom, S., and Boonyawan, D., Surf. Coat. Technol., 2013, vol. 229, p. 12.

    Article  CAS  Google Scholar 

  43. Li, K. and Meichsner, J., Surf. Coat. Technol., 1999, vols. 116–119, p. 841.

    Article  Google Scholar 

  44. Liao, W.-B., Chang, Y.-C., Lin, Y.-A., Chen, H.-L., Chen, H.-P., Wei, H.-S., and Kuo, C.-C., Thin Solid Films, 2018, vol. 660, p. 678.

    Article  CAS  Google Scholar 

  45. Lee, S.H. and Lee, D.C., Thin Solid Films, 1998, vol. 325, p. 83.

    Article  CAS  Google Scholar 

  46. Kurosawa, S., Choi, B.-G., Park, J.-W., Aizawa, H., Shim, K.-B., and Yamamoto, K., Thin Solid Films, 2006, vol. 506-507, p. 176.

    Article  CAS  Google Scholar 

  47. Lou, B.-S., Wang, S.-B., Hung, S.-B., Wang, C.-J., and Lee, J.-W., Thin Solid Films, 2018, vol. 660, p. 637.

    Article  CAS  Google Scholar 

  48. Mu, H., Wang, X., Li, Z., Xie, Y., Gao, Y., and Liu, H., Vacuum, 2019, vol. 165, p. 7.

    Article  CAS  Google Scholar 

  49. Van Ooij, W.I., Eufinger, S., and Guo, S., Plasma Chem. Plasma Process., 1997, vol. 17, no. 2, p. 123.

    Article  CAS  Google Scholar 

  50. Fei, F., Qiang, C., Zhongwei, L., Fuping, L., and Solodovnyk, A., Plasma Chem. Plasma Process., 2012, vol. 32, p. 755.

    Article  CAS  Google Scholar 

  51. Guermat, N., Bellel, A., Sahli, S., Segui, Y., and Raynaud, P., Thin Solid Films, 2009, vol. 517, p. 4455.

    Article  CAS  Google Scholar 

  52. Tsankov, D., Radev, E., Hinrichs, K., Rfseler, A., and Korte, E.-H., Thin Solid Films, 2005, vol. 476, p. 174.

    Article  CAS  Google Scholar 

  53. Jaritz, M., Alizadeh, P., Wilski, S., Kleines, L., and Dahlmann, R., Plasma Process. Polym., 2021, vol. 18, no. 8, p. 2100018.

    Article  CAS  Google Scholar 

  54. Malekzad, H., Gallingani, T., Barletta, F., Gherardi, M., Colombo, V., and Duday, D., Plasma Process. Polym., 2021, vol. 18, no. 2, p. 2000044.

    Article  CAS  Google Scholar 

  55. Mohammadi, H.R., Taghvaei, H., and Rabiee, A., Plasma Process. Polym., 2021, vol. 18, no. 2, p. 2000209.

    Article  CAS  Google Scholar 

  56. Trinh, Q.H., Nguyen, D.B., Hossain, M.M., and Mok, Y.S., Surf. Coat. Technol., 2019, vol. 361, p. 377.

    Article  CAS  Google Scholar 

  57. Asadollahi, S., Profili, J., Farzaneh, M., and Stafford, L., Thin Solid Films, 2020, vol. 714, p. 138369.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Academician A.M. Muzafarov for the idea of writing this paper.

Funding

This work was supported by the Ministry of Science and Education of the Russian Federation, subject number FFSM-2021-0006, and the Russian Foundation for Basic Research, project no. 20-08-00655.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. B. Gilman or A. V. Zinoviev.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilman, A.B., Zinoviev, A.V. & Kuznetsov, A.A. Organosilicon-Based Hybrid Materials Produced Using Low Temperature Plasma. High Energy Chem 56, 468–476 (2022). https://doi.org/10.1134/S0018143922060078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143922060078

Keywords:

Navigation