Skip to main content
Log in

Specific Features in the Triplet–Triplet Absorption Spectra of Multi-Chromophoric Molecules: a Computational Study

  • PHOTONICS
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

Singlet–singlet (S–S) and triplet–triplet (T–T) absorption spectra of multi-chromophoric molecules containing polyphenyl fragments are studied computationally by quantum chemical DFT/TDDFT methods. Patterns observed previously in experimental absorption spectra of the parent chromophore and its composite analogs are interpreted based on the localization of molecular orbitals (MO) involved in the optically active transitions. In the singlet ground state, the tilt between the phenyl fragments in the parent molecule and in the respective fragments of its composite analog is similar. The composite molecules exhibit symmetric geometry; therefore, MO localized on different ‘parent’ moieties are quasi-degenerate. Optically active transitions are delocalized over these moieties, and the position of the intense S–S absorption band is not altered. By contrast, the equilibrium geometry of the triplet ground state of the parent molecule is planar. In the multi-chromophoric analog, only one of the ‘parent’ polyphenyl moieties becomes planar. This property results in two specific features: (i) the character of the lowest triplet state is similar in the parent chromophore and its composite; therefore, no shift in their phosphorescence spectrum is observed; (ii) a change in the symmetry of the composite analog gives rise to intramolecular charge-transfer (CT) bands in its T–T absorption spectrum, which is not observed in the spectrum of the parent chromophore. An increase in the conjugation length of the parent chromophore leads to a decrease in the energy difference between the local and intramolecular CT bands in the spectrum of the composite species. These features are reproduced at the DFT/TDDFT level of theory with a good agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Ashkenasy, G., Hermans, T.M., Otto, S., and Taylor, A.F., Chem. Soc. Rev., 2017, vol. 46, p. 2543.

    Article  CAS  Google Scholar 

  2. Alfimov, M.V., Batekha, I.G., Shek, Yu.B., and Gerko, V.I., Spectrochim. Acta, Part A, 1971, vol. 27, p. 329.

    Article  CAS  Google Scholar 

  3. Gerko, V.I., Alfimov, M.V., Popov, L.S., and Kovalenko, N.P., Dokl. Akad. Nauk SSSR, 1976, vol. 230, no. 1, p. 125.

    CAS  Google Scholar 

  4. Sheck, Yu.B., Kovalenko, N.P., and Alfimov, M.V., J. Lumin., 1977, vol. 15, p. 157.

    Article  CAS  Google Scholar 

  5. Chibisov, A.K., Russ. Chem. Rev., 1970, vol. 39, no. 10, p. 891.

    Article  Google Scholar 

  6. Labhart, H. and Heinzelmann, W., Organic Molecular Photophysics, Birks, J.B., Ed., New York: Wiley, 1973, vol. 1, p. 297.

    Google Scholar 

  7. Carmichael, I. and Hug, G.L., J. Phys. Chem. Ref. Data, 1986, vol. 15, no. 1, p. 1.

    Article  Google Scholar 

  8. Kasha, M., Rawls, H.R., and El-Bayoumi, M.A., Pure Appl. Chem., 1965, vol. 11, nos. 3–4, p. 371.

    Article  CAS  Google Scholar 

  9. Kreibich, U.T. and Wild, U.P., J. Mol. Spectrosc., 1973, vol. 47, p. 189.

    Article  CAS  Google Scholar 

  10. Tahara, T., Hamaguchi, H., and Tasumi, M., J. Phys. Chem., 1990, vol. 94, no. 1, p. 170.

    Article  CAS  Google Scholar 

  11. Nguyen, K.A. and Kennel, J., J. Chem. Phys., 2002, vol. 117, no. 15, p. 7128.

    Article  CAS  Google Scholar 

  12. Cronstrand, P., Rinkevicius, Z., Luo, Y., and Agren, H., J. Chem. Phys., 2005, vol. 122, no. 22, p. 224104.

    Article  Google Scholar 

  13. Krysko, I.D., Freidzon, A.Y., and Bagaturyants, A.A., J. Phys. Chem. C, 2019, vol. 123, p. 11171.

    Article  CAS  Google Scholar 

  14. Osad’ko, I.S., Opt. Spectrosc., 2019, vol. 127, no. 1, p. 1.

    Article  Google Scholar 

  15. Andrzejak, M., Skora, T., and Petelenz, P., J. Phys. Chem. C, 2019, vol. 123, no. 1, p. 91.

    Article  CAS  Google Scholar 

  16. Tatikolov, A.S. and Pronkin, P.G., J. Appl. Spectrosc., 2019, vol. 85, p. 991.

    Article  CAS  Google Scholar 

  17. Fedotova, T.V., Gutrov, V.N., Zakharova, G.V., Chibisov, A.K., and Alfimov, M.V., High Energy Chem., 2019, vol. 53, no. 1, p. 22.

    Article  CAS  Google Scholar 

  18. Arbeloa, E.M., Previtali, C.M., and Bertolotti, S.G., ChemPhysChem, 2018, vol. 19, no. 8, p. 934.

    Article  CAS  Google Scholar 

  19. Militello, M.P., Hernandez-Ramirez, R.E., Lijanova, I.V., Previtali, C.M., Bertolotti, S.G., and Arbeloa, E.M., J. Photochem. Photobiol., A, 2018, vol. 353, p. 71.

    Article  CAS  Google Scholar 

  20. Jacquemin, D., Perpete, E.A., Scalmani, G., Frisch, M.J., Assfeld, X., Ciofini, I., and Adamo, C., J. Chem. Phys., 2006, vol. 125, p. 164324.

    Article  Google Scholar 

  21. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M., and Montgomery, J.A., J. Comput. Chem., 1993, vol. 14, p. 1347.

    Article  CAS  Google Scholar 

  22. Gordon, M.S. and Schmidt, M.W., Theory and Applications of Computational Chemistry: The First Forty Years, Dykstra, C.E., Frenking, G., Kim, K.S., and Scuseria, G.E., Eds., Amsterdam: Elsevier, 2005, p. 1167.

    Google Scholar 

  23. Granovsky, A.A., Firefly, Version 8.2.0, 2017. https://classic.chem.msu.su/gran/firefly/index.html

Download references

ACKNOWLEDGMENTS

This work was supported by the Ministry of Science and Higher Education within the State assignment FSRC “Crystallography and Photonics” RAS. The authors are grateful to dr. K.G. Komarova and prof. A.K. Chibisov for many useful comments and suggestions related to the problem considered in this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. A. Anger or N. O. Dubinets.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfimov, M.V., Anger, I.A., Dubinets, N.O. et al. Specific Features in the Triplet–Triplet Absorption Spectra of Multi-Chromophoric Molecules: a Computational Study. High Energy Chem 56, 391–398 (2022). https://doi.org/10.1134/S0018143922060029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143922060029

Keywords:

Navigation