Skip to main content
Log in

One-Dimensional Simulation of Microwave Discharge in a Gas Bubble in Water

  • PLASMA CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

This work is devoted to simulating a microwave discharge in water and studying kinetic processes in a gaseous mixture of water decomposition products. Calculations have been performed for atmospheric and low pressure and a constant gas temperature. A one-dimensional model has been developed on the basis of the joint solution of the balance equation for neutral and charged plasma components, the Boltzmann equation, the equation for the stationary distribution of the microwave field in the plasma-filled volume, and the Poisson equation. Using the zero-dimensional model, an abridged kinetic reaction scheme for water vapor plasma was obtained, which was employed in the one-dimensional model. The calculations have been carried out for preset values of the microwave field. It has been shown that the modes of transition from electronegative to electropositive plasma obtained using the zero-dimensional model at E/N values above 350 Td are not observed in the case of the one-dimensional model of microwave discharge. In a wide range of microwave field values specified on the antenna, the microwave plasma in water is electronegative. The concentration of electrons is low in comparison with the concentration of positive ions H3O+, \({{{\text{H}}}_{5}}{\text{O}}_{2}^{ + }\), and H3O+(H2O)3, quasi-neutrality is maintained by the negative ion OH, and the degree of dissociation of water does not exceed 20–25%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Bruggeman, P.J. and Leys, C., J. Phys. D: Appl. Phys., 2009, vol. 42, p. 053001.

    Article  Google Scholar 

  2. Samukawa, S., Hori, M., Rauf, S., et al., J. Phys. D: Appl. Phys., 2012, vol. 45, p.253001.

    Article  Google Scholar 

  3. Bruggeman, P.J., Kushner, M.J., Locke, B.R., et al., Plasma Sources Sci. Technol., 2016, vol. 25, p. 053002.

    Article  Google Scholar 

  4. Horikoshi, S. and Serpone, N., RSC Adv., 2017, vol. 7, p. 47196.

    Article  CAS  Google Scholar 

  5. Adamovich, I., Baalrud, S.D., Bogaerts, A., et al., J. Phys. D: Appl. Phys., 2017, vol. 50, p. 323001.

    Article  Google Scholar 

  6. Lebedev, Yu.A., Plasma Phys. Rep., 2017, vol.43, p. 676.

    Google Scholar 

  7. Vanraes, P.A. and Bogaerts, A., Appl. Phys. Rev., 2018, vol. 5, p. 031103.

    Article  Google Scholar 

  8. Lebedev, Yu.A., High Temp., 2018, vol. 56, p. 811.

    Article  CAS  Google Scholar 

  9. Malik, M.A., Ghaffar, A., Malik, S.A., Plasma Sources Sci. Technol., 2001, vol. 10, p. 82.

    Article  CAS  Google Scholar 

  10. Rybkin, V.V. and Shutov, D.A., Plasma Phys. Rep., 2017, vol.43, p. 1089.

    Article  CAS  Google Scholar 

  11. Foster, J., Phys. Plasmas, 2017, vol. 24, p. 055501.

    Article  Google Scholar 

  12. Rezaei, F., Vanraes, P., Nikiforov, A., et al., Materials, 2019, vol. 12, p. 2751.

    Article  CAS  Google Scholar 

  13. Aoki, H., Kitano, K., and Hamaguchi, S., Plasma Sources Sci. Technol., 2008, vol. 17, p. 025006.

    Article  Google Scholar 

  14. Hattori, Y., Mukasa, S., Nomura, S., et al., J. Appl. Phys., 2010, vol. 107, p. 063305.

    Article  Google Scholar 

  15. Hattori, Y., Mukasa, S., Toyota, H., et al., Surf. Coat. Technol., 2012, vol. 206, p. 2140.

    Article  CAS  Google Scholar 

  16. Horikoshi, S., Sawada, S., Sato, S., et al., Plasma Chem. Plasma Process., 2019, vol. 39, p. 51.

    Article  CAS  Google Scholar 

  17. Ishijima, T., Hotta, H., Sugai, H., et al., Appl. Phys. Lett., 2007, vol. 91, p. 121501.

    Article  Google Scholar 

  18. Ishijima, T., Sugiura, H., Saito, R., et al., Plasma Sources Sci. Technol., 2010, vol. 19, p. 015010.

    Article  Google Scholar 

  19. Maehara, T., Honda, S., Inokuchi, C., et al., Plasma Sources Sci. Technol., 2011, vol. 20, p.034016.

    Article  Google Scholar 

  20. Sato, S., Mori, K., Ariyada, O., et al., Surf. Coat. Technol., 2011, vol. 206, p. 955.

    Article  CAS  Google Scholar 

  21. Zhao, X.-T., Zhu, X.-M., Yan, Z.-Y., et al., IEEE Trans Plasma Sci., 2016, vol. 44, no 8.

  22. Nomura, S., Toyota, H., Mukasa, S., et al., Appl. Phys. Express, 2008, vol. 1, p. 046002.

    Article  Google Scholar 

  23. Li, H.O.L., Kang, J., Urashima, K., et al., J. Inst. Electrostat. Jpn., 2013, vol. 37, p. 22.

    CAS  Google Scholar 

  24. Hattori, Y., Mukasa, S., Toyota, H., et al., Curr. Appl. Phys., 2013, vol. 13, p. 1050.

    Article  Google Scholar 

  25. Tian, W., Tachibana, K., and Kushner, M.J., J. Phys. D: Appl. Phys., 2014, vol. 47, p. 055202.

    Article  CAS  Google Scholar 

  26. Takeuchi, N., Ishii, Y., and Yasuoka, K., Plasma Sources Sci. Technol., 2012, vol. 21, p. 015006.

    Article  Google Scholar 

  27. Tong, L., Simulation of the plasma generated in a gas bubble. Excerpt from the Proceedings of the 2013 COMSOL Conference in Boston. https://www.comsol.ru/paper/simulation-of-the-plasma-generated-in-a-gas-bubble-15649

  28. Avtaeva, S., General, A., and Kel’man, V., J. Phys. D: Appl. Phys., 2010, vol. 43, p. 315201.

    Article  Google Scholar 

  29. Rehman, F., Lozano-Parada, J.H., and Zimmerman, W.B., Int. J. Hydrogen Energy, 2012, vol. 37, p. 17678.

    Article  CAS  Google Scholar 

  30. Sieck, L.W., Heron, J.T., and Green, D.S., Plasma Chem. Plasma Process., 2000, vol. 20, p. 235.

    Article  CAS  Google Scholar 

  31. Van Gaens, W. and Bogaerts A., J. Phys. D: Appl. Phys., 2013, vol. 46, p. 275201.

    Article  Google Scholar 

  32. Smirnov, B.M., Kompleksnye iony (Complex Ions), Moscow: Nauka, 1983.

  33. https://www.kinetics.nist.gov.

  34. Hirschfelder, J.O., Curtiss, C.F., and Bird, R.B., Molecular Theory of Gases and Liquids, New York: Wiley, 1954.

    Google Scholar 

  35. Raizer, Yu.P., Gas Discharge Physics, Berlin: Springer, 1991.

    Book  Google Scholar 

  36. Hagelaar, G. and Pitchford, L., Plasma Sources Sci. Technol., 2005, vol. 14, p. 722.

    Article  CAS  Google Scholar 

  37. Itikawa, Y. and Mason, N., J. Phys. Chem. Ref. Data, 2005, vol. 34, no. 1, p. 1.

    Article  CAS  Google Scholar 

  38. COMSOL Multiphysics. https://comsol.com/chemical-reactionengineering.

  39. Lebedev, Yu.A., Tatarinov, A.V., Epstein, I.L., and Averin, K.A., Plasma Chem. Plasma Process., 2016, vol. 36, p. 535.

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out under the state program of the Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences and supported in part by the Russian Foundation for Basic Research, project no. 21-52-53012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Lebedev.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, Y.A., Tatarinov, A.V., Epshtein, I.L. et al. One-Dimensional Simulation of Microwave Discharge in a Gas Bubble in Water. High Energy Chem 55, 507–518 (2021). https://doi.org/10.1134/S0018143921060096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143921060096

Keywords:

Navigation