Skip to main content
Log in

Simulation of microwave-induced formation of gas bubbles in liquid n-heptane

  • Plasma Chemistry
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

A model has been built and the formation of gas bubbles by exciting an atmospheric-pressure microwave discharge in liquid n-heptane has been numerically simulated in the approximation of axial symmetry. The model is based on the simultaneous solution of Maxwell’s equations, Navier–Stokes equations, the heat conduction equation, a balance equation for the electron number density (using the ambipolar diffusion approximation), Boltzmann’s equation for free plasma electrons, and the overall equation for the thermal degradation of n-heptane. The two-phase medium has been described using the phase field method. The calculation has made it possible to describe both the dynamics of the formation of gas bubbles in the liquid and the thermal processes in the system. The calculated gas temperature in the gas bubble with the plasma is in agreement with the measurement results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nomura, S. and Toyota, H., Appl. Phys. Lett., 2003, no. 83, p. 4503.

    Article  CAS  Google Scholar 

  2. Nomura, S., Toyota, H., Tawara, M., Yamashita, H., and Matsumoto, K., Appl. Phys. Lett., 2006, no. 88, p. 231502.

    Article  Google Scholar 

  3. Nomura, S., Toyota, H., Mukasa, S., Yamashita, H., Maehara, T., and Kuramoto, M., Appl. Phys. Lett., 2006, no. 88, p. 211503.

    Article  Google Scholar 

  4. Nomura, S., Toyota, H., Mukasa, S., Yamashita, H., Maehara, T., and Kawashima, A., J. Appl. Phys., 2009, no. 106, p. 073306.

    Article  Google Scholar 

  5. Ishijima, T., Sugiura, H., Satio, R., Toyada, H., and Sugai, H., Plasma Sources Sci. Technol., 2010, no. 19, p. 015010.

    Article  Google Scholar 

  6. Ishijima, T., Hotta, H., and Sugai, H., Appl. Phys. Lett., 2007, no. 91, p. 121501.

    Article  Google Scholar 

  7. Buravtsev, N.N., Konstantinov, V.S., Lebedev, Yu.A., and Mavlyudov, T.B., Microwave Discharges: Fundamentals and Applications (Proceedings of VII International Workshop, September10–14, 2012, Zvenigorod, Russia), Lebedev, Yu.A., Ed., Moscow: YanusK, 2012, p. 167.

  8. Lebedev, Yu.A, Konstantinov, V.S., Yablokov, M.Yu., Shchegolikhin, A.N., and Surin, N.M., High Energy Chem., 2014, no. 48, p. 385.

    Article  CAS  Google Scholar 

  9. Camerotto, E., De Schepper, R., and Nikiforov, A.Y., J. Phys. D: Appl. Phys., 2012, no. 45, p. 435201.

    Article  Google Scholar 

  10. Lebedev, Yu.A., Epstein, I.L., Shakhatov, V.A., Yusupova, E.V., and Konstantinov, V.S., High Temp., 2014, no. 52, p. 319.

    Article  CAS  Google Scholar 

  11. Sun, Y. and Beckermann, C., Physica D (Amsterdam), 2004, no. 198, p. 281.

    Article  Google Scholar 

  12. Jamet, D., http://pmc.polytechnique.fr/mp/GDR/docu/Jamet.pdf

  13. Curran, H.J., Gaffuri, P., Pitz, W.J., and Westbrook, C.K., Combust. Flame, 1998, no. 114, p. 149.

    Article  CAS  Google Scholar 

  14. Raizer, Yu.P., Fizika gazovogo razryada (Gas Discharge Physics), Moscow: Nauka, 1987.

    Google Scholar 

  15. Kosarev, I.N., Aleksandrov, N.L., Kindysheva, S.V., Starikovskaia, S.M., and Starikovskii, A.Yu., Combust. Flame, 2009, no. 156, p. 221.

    Article  CAS  Google Scholar 

  16. Slovetskii, D.I., Khim. Plazmy, 1981, issue 8, p. 189.

    CAS  Google Scholar 

  17. Morgan Database, www.lxcat.net

  18. Vacher, J.R., Jorand, F., Blin-Simiand, N., and Pasquiers, S., Int. J. Mass Spectrom., 2010, no. 295, p. 78.

    Article  CAS  Google Scholar 

  19. McDaniel, E. and Mason, E., The Mobility and Diffusion of Ions in Gases, New York: Wiley, 1973.

    Google Scholar 

  20. Entsiklopediya nizkotemperaturnoi plazmy (Encyclopedia of Low-Temperature Plasma) Fortov, V.E, Ed., Moscow: Nauka, 2000, vol. 1, sect. II.4.5.

  21. COMSOL 3.5a, http://www.comsol.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Lebedev.

Additional information

Original Russian Text © A.V. Tatarinov, Yu.A. Lebedev, I.L. Epstein, 2016, published in Khimiya Vysokikh Energii, 2016, Vol. 50, No. 2, pp. 149–154.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tatarinov, A.V., Lebedev, Y.A. & Epstein, I.L. Simulation of microwave-induced formation of gas bubbles in liquid n-heptane. High Energy Chem 50, 144–149 (2016). https://doi.org/10.1134/S0018143916020077

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143916020077

Keywords

Navigation