Skip to main content
Log in

Photovoltaic Effect in Phthalocyanine-Based Organic Solar Cells: 1. Thermal Ionization of Molecular Excitons

  • PHOTONICS
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

Based on the previously obtained data [1, 2], according to which the photoelectric quantum yield (Y) in crystals of the β-form of metal-free phthalocyanine and copper phthalocyanine is the same for electrons and holes and has an Arrhenius temperature dependence with an activation energy EY equal to the difference between the band gap and the molecular exciton (ME) energy, a three-dimensional stochastic model of thermal ionization of MEs is proposed, which is considered as a sequence of reversible transitions from the ME to the lowest charge-transfer (CT) state and then to a CT state with an increasing charge-transfer distance. A relationship has been found between EY and the radial density of CT states at which the probability of charge separation is greater than that of the decay of these states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Usov, N.N. and Benderskii, V.A., Phys. Status Solidi B, 1970, vol. 37, p. 535.

    Article  CAS  Google Scholar 

  2. Benderskii, V.A., Belkind, A.I., Fedorov, M.I., and Aleksandrov, S.B., Fiz. Tverd. Tela, 1972, vol. 14, p. 790.

    CAS  Google Scholar 

  3. Liaou, H.-C., Chen, P.-H., Chang, R.P.H., and Su, W.-F., Polymers, 2014, vol. 6, p. 2784.

    Article  Google Scholar 

  4. Lee, C.-H., Lee, G.-H., Zande, A.M., Chen, W., Han, M., Cui, X., Arefe, G., Nuckolis, C., Heinz, T.F., Guo, J., Hone, J., and Kim, P., Nat. Nanotechnol., 2014, vol. 9, p. 676.

    Article  CAS  Google Scholar 

  5. Elumalai, N.K. and Uddin, A., Energy Environ. Sci., 2016, vol. 9, p. 391.

    Article  CAS  Google Scholar 

  6. Ganesamoorthy, R., Sathiyan, G., and Sakthivel, P., Sol. Energy Mater. Sol. Cells, 2017, vol. 161, p. 102.

    Article  CAS  Google Scholar 

  7. Trindade, A.J. and Pereira, L., Int. J. Photoenergy, 2017, article ID 1364152.

  8. Gaspar, H., Figueira, F., Pereira, L., Mendes, A., Viana, J.C., and Bernardo, G., Materials, 2018, vol. 11, p. 2560.

    Article  Google Scholar 

  9. Coropceanu, V., Chen, X.-K., Wang, T., Zheng, Z., and Bredas, J.-L., Nat. Rev. Mater., 2019, vol. 4, p. 689.

    Article  Google Scholar 

  10. Fan, B., Zhong, W., Ying, L., Zhang, D., Li, M., Lin, Y., Xia, R., Liu, F., Yip, H.-L., Li, H., Ma, Y., Brabec, C.J., Huang, F., and Cao, Y., Nat. Commun., 2019, vol. 10, p. 1038.

    Article  Google Scholar 

  11. Sun, H., Chen, F., and Chen, Z.-K., Mater. Today, 2019, vol. 24, p. 94.

    Article  CAS  Google Scholar 

  12. Suman and Singh, S.P., J. Mater. Chem. A, 2019, vol. 7, p. 22701.

    Article  Google Scholar 

  13. Ferron, T., Waldrip, M., Pope, M., and Collins, B.A., J. Mater. Chem. A, 2019, vol. 7, p. 536.

    Article  Google Scholar 

  14. Li, M., Chen, J.-S., and Cotlet, M., ACS Energy Lett., 2019, vol. 4, p. 2323.

    Article  CAS  Google Scholar 

  15. McKeown, N.B., Phthalocyanine Materials, Cambridge: Cambridge Univ. Press, 1998.

    Google Scholar 

  16. Walter, M.G., Rudine, A.B., and Wamser, C.C., J. Porphyrins Phthalocyanines, 2010, vol. 14, p. 759.

    Article  CAS  Google Scholar 

  17. Wipps, K.W. and Mazur, U., J. Porphyrins Phthalocyanines, 2012, vol. 16, p. 273.

    Article  Google Scholar 

  18. Zou, T., Wang, X., Ju, H., Zhao, L., Guo, T., Wu, W., and Wang, H., Crystals, 2018, vol. 8, p. 1.

    Article  Google Scholar 

  19. Agranovich, V.M., Excitations in Organic Solids, New York: AIP, 2008.

    Book  Google Scholar 

  20. Bondarev, I.V., Popescu, A., Younts, R.A., Hoffman, B., McAfee, T., Dougherty, D.B., Gundogdu, K., and Ade, H.W, Appl. Phys. Lett., 2016, vol. 109, p. 213302.

    Article  Google Scholar 

  21. Hiramoto, M., Kubo, M., Shinmura, Y., Ishiyama, N., Kaji, T., Sakai, K., and Izaki, M., Elecronics, 2014, vol. 3, p. 351.

    CAS  Google Scholar 

  22. Lalov, I.J., Warns, C., and Reineker, P., New J. Phys., 2008, vol. 10, no. 085006.

  23. Guan, Y.-S., Zhang, Z., Pan, J., Jan, Q., and Ren, S., J. Mater. Chem. C, 2017, p. 12338.

  24. Usman, R., Khan, A., Wang, M., Luo, Y., Sun, W., Sun, H., Du, C., and He, N., Crystal Growth Design, 2018, vol. 18, p. 6001.

    Article  CAS  Google Scholar 

  25. Merrifield, R.E., J. Chem. Phys., 1961, vol. 34, p. 1835.

    Article  CAS  Google Scholar 

  26. Benderskii, V.A., Blyumenfel’d, L.A., and Popov, D.A., Zh. Strukt. Khim., 1966, vol. 7, p. 370.

    CAS  Google Scholar 

  27. Zoos, Z.G., Annu. Rev. Phys. Chem., 1974, vol. 25, p. 121.

    Article  Google Scholar 

  28. Hill, I.G., Kahn, A., Soos, Z.G., and Pascal, R.A., Chem. Phys. Lett., 2000, vol. 327, p. 181.

    Article  CAS  Google Scholar 

  29. Benderskii, V.A. and Kats, E.I., JETP Lett., 2015, vol. 101, p. 17.

    Article  CAS  Google Scholar 

  30. Benderskii, V.A. and Kats, E.I., J. Exp. Theor. Phys., 2018, vol. 127, p. 566.

    Article  CAS  Google Scholar 

  31. Mehta, M.L., Random Matrices, New York: Academic, 1968.

    Google Scholar 

  32. Papenbrock, T. and Weidenmuller, H.A., Rev. Mod. Phys., 2007, vol. 79, p. 997.

    Article  Google Scholar 

  33. Rodrigues, K.R., Shah, S., Williams, S.M., Teters-Kennedy, S., and Coe, J.V., J. Chem. Phys., 2004, vol. 121, p. 8671.

    Article  Google Scholar 

  34. Benderskii, V.A., Gak, L.N., and Kats, E.I., J. Exp. Theor. Phys., 2009, vol. 108, p. 159.

    Article  CAS  Google Scholar 

  35. Wattis, J.A.D., Physica D (Amsterdam), 2006, vol. 222, p. 1.

    Article  Google Scholar 

  36. Ovchinnikov, A.A. and Ovchinnikova, M.Y., Adv. Quant. Chem., 1982, vol. 16, p. 161.

    Article  CAS  Google Scholar 

  37. Benderskii, V.A. and Benderskii, A.V., Laser Electrochemistry of Intermediates, Boca Raton: CRC, 1995.

    Google Scholar 

  38. Zaslavskii, G.M., Stokhastichnost’ dinamicheskikh sistem (Stochasticity of Dynamic Systems), Moscow: Nauka, 1984.

  39. Vishik, A.M., Kornfeld, I.P., and Sinai, Ya.G., Obshchaya ergodicheskaya teoriya dinamicheskikh sistem. Sovremennye problemy matematiki, T. 1 (Modern Problems of Mathematics, vol. 1: General Ergodic Theory of Dynamic Systems), Moscow: VINITI, 1985.

  40. Chirikov, B.V., Phys. Rep., 1979, vol. 52, p. 527.

    Article  Google Scholar 

  41. Benderskii, V.A. and Kats, E.I., High Energy Chem., 2020, vol. 54, no. 3, p. 175.

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out on the topic of State assignment no. 0089-2019-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Benderskii.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benderskii, V.A., Kim, I.P. Photovoltaic Effect in Phthalocyanine-Based Organic Solar Cells: 1. Thermal Ionization of Molecular Excitons. High Energy Chem 54, 383–392 (2020). https://doi.org/10.1134/S0018143920050033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143920050033

Keywords:

Navigation