Skip to main content
Log in

Germanium Catalyst for Plasma-Chemical Synthesis of Diamonds

  • PLASMA CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

A method for the synthesis of microdiamonds from graphite in an argon arc using germanium as a catalyst is presented. Simple microdiamonds and diamonds of complex configuration are obtained. It has been revealed that forms of synthesized nanomaterials are significantly affected by the buffer gas, the electrical and thermal parameters of the arc discharge, and the presence of germanium at the nucleation stage. Microdiamonds are formed within a few tens of seconds, which is much different from time required for their traditional production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Palyanov, Yu.N., Kupriyanov, I.N., Khokhryakov, A.F., and Ralchenko, V.G., Handbook of Crystal Growth, Rudolph, P., Ed., Amsterdam: Elsevier, 2015, vol. 2A, 2nd ed., p. 1418.

  2. Balmer, R.S., et al., J. Phys. Condens. Matter., 2009, vol. 21, p. 364221.

    Article  CAS  PubMed  Google Scholar 

  3. Optical Engineering of Diamond, Mildren, R.P. and Rabeau J.R., Eds., Weinheim: Wiley–VCH, 2013

    Google Scholar 

  4. Quantum Information Processing with Diamond, Prawer, S. and Aharonovich, I., Eds., Amsterdam: Elsevier, 2014.

    Google Scholar 

  5. Wrachtrup, J. and Jelezko, F., J. Phys. Condens. Matter., 2006, vol. 18, p. 807.

    Article  CAS  Google Scholar 

  6. Neumann, P., et al., Nat. Phys., 2010, vol. 6, p. 249.

    Article  CAS  Google Scholar 

  7. Taylor, J.M., et al., Nat. Phys., 2008, vol. 4, p. 810.

    Article  CAS  Google Scholar 

  8. Barnard, A.S., Analyst, 2009, vol. 134, no. 9, p. 1751.

    Article  CAS  PubMed  Google Scholar 

  9. Palyanov, Yu.N., Kupriyanov, I.N., Borzdov, Yu.M., and Surovtsev, N.V., Sci. Rep., 2015, vol. 5, p. 14789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Saifutdinov, A.I., Ibragimov, A.R., and Timerkaev, B.A., Tech. Phys. Lett., 2018, vol. 44, no. 2, p. 164.

    Article  CAS  Google Scholar 

  11. Saifutdinov, A.I., Fairushin, I.I., and Kashapov, N.F., JETP Lett., 2016, vol. 104, p. 180.

    Article  CAS  Google Scholar 

  12. Timerkaev, B.A., Shakirov, B.R., and Timerkaeva, D.B., High Energy Chem., 2019, vol. 53, no. 2, p. 162.

    Article  CAS  Google Scholar 

  13. Timerkaev, B.A. and Andreeva, A.A., J. Phys.: Conf. Ser., 2018, vol. 1058, p. 012071.

    Google Scholar 

  14. Ganieva, G.R., Ziganshin, D.I., Aukhadeev, M.M., and Timerkaev, B.A., J. Eng. Phys. Thermophys., 2014, vol. 87, no. 1, p. 699.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Timerkaev.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timerkaev, B.A., Kaleeva, A.A., Timerkaeva, D.B. et al. Germanium Catalyst for Plasma-Chemical Synthesis of Diamonds. High Energy Chem 53, 390–395 (2019). https://doi.org/10.1134/S0018143919050138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143919050138

Keywords:

Navigation