Skip to main content
Log in

Arc-Assisted Synthesis of Germanium Nanocrystals in Argon

  • PLASMA CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

This paper presents results on the synthesis of germanium nanocrystals in electric arc discharge. During the synthesis, the surface of a germanium anode was heated to the state of surface boiling. Atoms of vaporized germanium were deposited on the surface of a copper substrate. The resulting sample was examined with an electron microscope. The deposited material was shaped as crystalline nanospheres (nanocrystals) with a size ranging from 20 to 200 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Journet, C., Maser, W.K., Bernier, P., Loiseau, A., de la Chapelle, L.M., Lefrant, S., Deniard, P., Lee, R., and Fischer, J.E., Nature, 1997, vol. 388, p. 756.

    Article  CAS  Google Scholar 

  2. Berkowitza, A.E. and Walter, J.L., J. Mater. Res., 1987, vol. 2, p. 277.

    Article  Google Scholar 

  3. Meyyappan, M., J. Phys. D: Appl. Phys., 2011, vol. 44, article no. 174002.

    Article  Google Scholar 

  4. Plasma Processing of Nanomaterials, Sankaran, M.R., Ed., Boca Raton: CRC, 2011.

    Google Scholar 

  5. Ostrikov, K., Plasma Nanoscience: Basic Concepts and Applications of Deterministic Nanofabrication, Weinheim: Wiley–VCH, 2008.

    Book  Google Scholar 

  6. Journet, C., Picher, M., and Jourdain, V., Nanotechnology, 2012, vol. 23, no. 142001.

  7. Shigeta, M. and Murphy, A.B., J. Phys. D: Appl. Phys., 2011, vol. 44, article no. 174025.

    Article  Google Scholar 

  8. Ostrikov, K., Cvelbar, U., and Murphy, A.B., J. Phys. D: Appl. Phys., 2011, vol. 44, p. 7.

    Google Scholar 

  9. Ostrikov, K., Neyts, E.C., and Meyyappan, M., Adv. Phys., 2013, vol. 62, no. 2, p. 113.

    Article  CAS  Google Scholar 

  10. Samukawa, S., Hori, M., Rauf, S., Tachibana, K., Bruggeman, P., Kroesen, G., Whitehead, J.C., Murphy, A.B., Gutso, A.F., and Starikovskaia, S., J. Phys. D: Appl. Phys., 2012, vol. 45, article no. 253001.

    Article  Google Scholar 

  11. Adamovich, I., et al., J. Phys. D: Appl. Phys., 2017, vol. 50, article no. 323001.

    Article  Google Scholar 

  12. Kumar, A., Lin, P.A., Xue, A., Hao, B., Yap, Y.Kh., and Sankaran, R.M., Nat. Commun., 2013, vol. 4, no. 2618.

  13. Timerkaev, B.A., Kaleeva, A.A., Timerkaeva, D.B., and Saifutdinov, A.I., High Energy Chem., 2019, vol. 53, no. 5, p. 390.

    Article  Google Scholar 

  14. Chen, H.N., Seong, L.Y., Teck, Y.T., Huan, C.C., and Seong, S.Y., Sci. Rep., 2016, vol. 6, p. 33966.

    Article  Google Scholar 

  15. Vekselman, V., Raitses, Y., and Shneider, M.N., Phys. Rev. E: Stat Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2019, vol. 99, article no. 063205.

  16. Lebedev, Y.A., Averin, K.A., Borisov, R.S., Garifullin, A.R., Bobkova, E.S., and Kurkin, T.S., High Energy Chem., 2018, vol. 52, p. 324.

    Article  CAS  Google Scholar 

  17. Timerkaev, B.A., Kaleeva, A.A., Timerkaeva, D.B., and Saifutdinov, A.I., Russ. J. Phys. Chem. A, 2020, vol. 94, no. 3, p. 613.

    Article  CAS  Google Scholar 

  18. Timerkaev, B.A., Shakirov, B.R., and Timerkaeva, D.B., High Energy Chem., 2019, vol. 53, no. 2, p. 162.

    Article  CAS  Google Scholar 

  19. Lu, X., Korgel, B.A., and Johnston, K.P., Nanotechnology, 2005, vol. 16, p. 389.

    Article  CAS  Google Scholar 

  20. Lee, J.-H., Lee, E.-K., Kang, S.-G., Jung, S.-H., et al., Appl. Surf. Sci., 2018, vol. 440, p. 553.

    Article  CAS  Google Scholar 

  21. Dag, Ö., Kuperman, A., and Ozin, G.A., Adv. Mater., 1994, vol. 6, no. 2, p. 147.

    Article  CAS  Google Scholar 

  22. Hendrickx, N.W., Lawrie, W.I.L., Russ, M., et al., Nature, 2021, vol. 591, p. 580.

    Article  CAS  Google Scholar 

  23. Saifutdinov, A.I., Fairushin, I.I., and Kashapov, N.F., JETP Lett., 2016, vol. 104, p. 180.

    Article  CAS  Google Scholar 

  24. Saifutdinov, A.I., Timerkaev, B.A., and Saifutdinova, A.A., JETP Lett., 2020, vol. 112, no. 7, p. 405.

    Article  CAS  Google Scholar 

  25. Saifutdinov, A.I., J. Appl. Phys., 2021, vol. 129, article no. 093302.

    Article  CAS  Google Scholar 

  26. Saifutdinov, A.I., Timerkaev, B.A., and Ibragimov, A.R., Tech. Phys. Lett., 2018, vol. 44, no. 2, p. 164.

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research and Republic of Tatarstan’s Administration, project no. 18-43-160005 r_a.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. A. Timerkaev or A. I. Saifutdinov.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timerkaev, B.A., Shakirov, B.R., Kaleeva, A.A. et al. Arc-Assisted Synthesis of Germanium Nanocrystals in Argon. High Energy Chem 55, 402–406 (2021). https://doi.org/10.1134/S0018143921050106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143921050106

Keywords:

Navigation