Skip to main content
Log in

Preparation of colloidal lead sulfide nanoparticles by laser ablation in water for optoelectronic devices applications

  • Nanostructured Systems and Materials
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

In present work, lead sulfide PbS nanoparticles NPs are synthesized by laser ablation of lead sulfide target in double distilled water using 0.532 and 1.064 μm wavelengths. The transmission electron microscopy TEM, atomic force microscopy AFM and X-ray diffraction XRD were used so as to determine the shape, size, distribution, and structure of the nanoparticles prepared with different laser wavelengths. X-ray diffraction results confirmed that the lead sulfide nanoparticles crystallized in the cubic phase and presents a preferential orientation along (200) plane and with no observation of any incomplete phases. Optical band gap values of 1.9 and 2eV for the lead sulfide nanoparticles were determined by UV-Vis absorption measurements. It was found that the morphology and size of PbS NPs depend on laser wavelength. To check the possibility of synthesised nanoparticles for optoelectronic devices, a novel type of solution-processed hetero-junction photodetector, prepared by drop cast film of colloidal lead sulfide nanoparticles NPs onto n-type single crystal silicon wafer was demonstrated. The effect of laser wavelength on the electrical characteristics and photosensitivity of p-PbS/n-Si heterojunction has been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aaron, D., Barkhouse, R., Debnath, R., Kramer, I., Zhitomirsky, D., Pattantyus-Abraham, A., Levina, L., Etgar, L., Grätzel, M., and Sargent, E., Advanced Materials, 2011, vol. 23, p. 3134.

    Article  Google Scholar 

  2. Konstantatos, G. and Sargent, E., Infrared Physics & Technology, 2011, vol. 54, p. 278.

    Article  CAS  Google Scholar 

  3. Knstantatos, G., Cliford, J., Levina, L., and Sargent, E., Nature Photonic, 2007, vol. 1, p. 531.

    Article  Google Scholar 

  4. Joshi, R., Kanjilalb, A., and Sehgal, H., Appl. Surf. Sci., 2004, vol. 221, p. 43.

    Article  CAS  Google Scholar 

  5. Park, J., Joo, J., Kwon, S., Jang, Y., and Angew, T., Chem. Int. Ed., 2007, vol. 46, p. 4630.

    Article  CAS  Google Scholar 

  6. Tang, J., Wang, X., Brzozowski, L., Aaron, D., and Barkhouse, R., Advanced Materials, 2010, vol. 22, p. 1398.

    Article  CAS  Google Scholar 

  7. Tsuji, T., Iryo, K., Watanabe, N., and Tsuji, M., Applied Surface Science, 2002, vol. 202, p. 80.

    Article  CAS  Google Scholar 

  8. Elsayed, K., Imamb, H., Ahmeda, M., and Ramadan, R., Optics and Laser Technology, 2013, vol. 45, p. 495.

    Article  CAS  Google Scholar 

  9. Ismail, R., Ali, A., Ismail, M., and Hassoon, K., Applied Nanoscience, 2011, vol. 1, p. 45.

    Article  CAS  Google Scholar 

  10. Tsuji, T., Watanabe, N., and Tsuji, M., Applied Surface Science, 2003, vol. 211, p. 189.

    Article  CAS  Google Scholar 

  11. Ismail, R., Ali, A., and Hasson, K., Micro & Nano Letters, 2012, vol. 7, p. 536.

    Article  Google Scholar 

  12. Ismail, R., Ali, A., and Hassoon, K., Optics and Laser Technology, 2013, vol. 51, p. 1.

    Article  CAS  Google Scholar 

  13. Iskari, M. and Chamsari, M., Scientia Iranica, 2003, vol. 10, p. 357.

    Google Scholar 

  14. Xiao-Yun, T., Yan-Hua, W., Wei, Y., Wei, G., and Guang-Sheng, F., China Physics B, 2012, vol. 21, p. 097105.

    Article  Google Scholar 

  15. Qin, L. and Shing, C., IEEE Electron Device Letters, 2011, vol. 32, p. 51.

    Article  CAS  Google Scholar 

  16. Huang, C., Wang, D., Wang, C., Wang, Y., Jiang, Y., Yang, Y. J., Chen, C., and Chen, Y., Journal of Physics D: Applied Physics, 2011, vol. 44, p. 085103.

    Article  Google Scholar 

  17. Johnston, K., Pattantyus-Abraham, A., Clifford, J., Myrskog, S., MacNeil, D., Levina, L., Sargent, E., Applied Physics Letters, 2008, vol. 92, p. 151115.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raid A. Ismail.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, R.A. Preparation of colloidal lead sulfide nanoparticles by laser ablation in water for optoelectronic devices applications. High Energy Chem 49, 58–63 (2015). https://doi.org/10.1134/S0018143915010051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143915010051

Keywords

Navigation