Skip to main content
Log in

Determination of rate constants for radical telomerization chain growth and transfer from the molecular-mass distribution of oligomer

  • General Aspects of High Energy Chemistry
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The ratio of rate constant for growth and transfer X(n), as a function of the chain length n has been found from the measured molecular-mass distributions of the products of tetrafluoroethylene telomerization in acetone, ethyl acetate, chloroform, and carbon tetrachloride. For all these telogens, the function increases by a factor of 1.5–2.5 in the range of n from 2 to 5, is almost constant for n of 6 to 10, and increases by a factor of 7–10 in the range of n from 12 to 20. This behavior of the function X(n) has been explained in terms of the model of diffusion-controlled propagation and kinetic chain transfer. The model takes into account the change in the diffusion nature of oligomers in the form of rigid rods with an increase in their length. A sharp increase in X(n) occurs when the oligomers that accumulate in the environment of growing macroradical sterically restrict the withdrawal of the forming oligomer to the bulk by an effective solid angle, which decreases with the increasing oligomer length and becomes minimal in the region of formation of colloidal particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, I.P., Khim. Vys. Energ., 2011, vol. 45, no. 5 [High Energy Chem., 2011, vol. 45, no. 5].

  2. Bagdasar’yan, Kh.S., Teoriya radikal’noi polimerizatsii (The Theory of Radical Polymerization), Moscow: Nauka, 1966.

    Google Scholar 

  3. Free Radical Polymerization, vol. 14A of Comprehensive Chemical Kinetics, Bemford S.H. and Tipper C.F.H., Eds., Amsterdam: Elsevier, 1976.

    Google Scholar 

  4. Kim, I.P. and Shestakov, A.F., Khim. Vys. Energ., 2009, vol. 43, no. 6, p. 516 [High Energy Chem., 2009, vol. 43, no. 6, p. 460].

    Google Scholar 

  5. Shestakov, A.F. and Kim, I.P., Khim. Vys. Energ., 2009, vol. 43, no. 6, p. 555 [High Energy Chem., 2009, vol. 43, no. 6, p. 499].

    Google Scholar 

  6. Kim, I.P., Martynenko, V.M., Shul’ga, Yu.M., and Shestakov, A.F., Khim. Vys. Energ., 2010, vol. 44, no. 6, p. 483 [High Energy Chem., 2010, vol. 44, no. 6, p. 449].

    Google Scholar 

  7. Kim, I.P., Shul’ga, Yu.M., and Shestakov, A.F., Khim. Vys. Energ., 2011, vol. 45, no. 1, p. 46 [High Energy Chem., 2011, vol. 45, no. 1, p. 43].

    Google Scholar 

  8. Ovchinnikov, A.A., Timashev, S.F., and Belyy, A.A., Kinetics of Diffusion-Controlled Chemical Processes., New York, Nova Science, 1986.

    Google Scholar 

  9. Clement, E., Sander, L.M., and Kopelman, R., Phys. Rev. A, 1989, vol. 39, p. 6455.

    Article  CAS  Google Scholar 

  10. Doi, M. and Edwards, S.F., The Theory of Polymer Dynamics, New York: Oxford Univ. Press, 1986.

    Google Scholar 

  11. Kirkwood, J.G. and Auer, P.L., J. Chem. Phys., 1951, vol. 19, p. 281.

    Article  CAS  Google Scholar 

  12. Ortega, A. and Garcia De La Torre J., J. Chem. Phys., 2003, vol. 119, p. 9914.

    Article  CAS  Google Scholar 

  13. Semenov, A.N. and Khokhlov, A.R., Usp. Fiz. Nauk, 1988, vol. 156, p. 427.

    Article  CAS  Google Scholar 

  14. Landau, L.D. and Lifshits, E.M., Gidrodinamika (Hydrodynamics), Moscow: Nauka, 1988.

    Google Scholar 

  15. Curtiss, C.F., Bird, R.B., and Hassager, O., Adv. Chem. Phys., 1976, vol. 36, p. 31.

    Article  Google Scholar 

  16. Doi, M. and Edwards, S.F., J. Chem. Soc., Faraday Trans. 2, 1978, vol. 74, pp. 560, 918.

    Article  CAS  Google Scholar 

  17. De Gennes, P.G., J. Chem. Phys., 1980, vol. 72, p. 4576.

    Google Scholar 

  18. Daschnagel, J., Binder, K., Doruker, P., Gusev, A.A., Hahn, O., Kremer, K., Mattice, W.L., Muller-Plathe, F., Murat, W., Paul, W., Santos, S., Suter, U.W., and Tries, V., Adv. Polym. Sci., 2000, vol. 152, p. 41.

    Article  Google Scholar 

  19. De Gennes, P.G., Macromolecules, 1976, vol. 9, pp. 587, 594.

    Article  Google Scholar 

  20. De Gennes, P.G., Scaling Concept in Polymer Physics, Ithaca: Cornell Univ. Press, 1979.

    Google Scholar 

  21. Doi, M. and Edwards, S.F., J. Chem. Soc. Farad. Trans. II, 1978, vol. 74, pp. 1789, 1802, 1818.

    Article  CAS  Google Scholar 

  22. Slater, G.V. and Wu, S.Y., Phys. Rev. Lett., 1995, vol. 75, p. 164.

    Article  Google Scholar 

  23. Ebert, U., Baumgartner, A., and Schafer, L., Phys. Rev. B, 1996, vol. 53, p. 950.

    Article  CAS  Google Scholar 

  24. Ebert, U., Baumgartner, A., and Schafer, L., Phys. Rev. Lett., 1997, vol. 78, p. 1592.

    Article  CAS  Google Scholar 

  25. Muller, M. and Daoulas, K.C., J. Chem. Phys., 2008, vol. 129, p. 164906.

    Article  Google Scholar 

  26. Kim, I.P. and Benderskii, V.A., Khim. Vys. Energ., 2010, vol. 44, no. 5, p. 387 [High Energy Chem., 2010, vol. 44, no. 5, p. 357].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Kim.

Additional information

Original Russian Text © I.P. Kim, V.A. Benderskii, 2011, published in Khimiya Vysokikh Energii, 2011, Vol. 45, No. 5, pp. 406–413.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, I.P., Benderskii, V.A. Determination of rate constants for radical telomerization chain growth and transfer from the molecular-mass distribution of oligomer. High Energy Chem 45, 372–379 (2011). https://doi.org/10.1134/S0018143911050080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143911050080

Keywords

Navigation