Skip to main content
Log in

Femtosecond pulse excitation of vibrational wave packets in chloroform: The effect of gold nanoparticles

  • Nanostructured Systems and Materials
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

Excitation of pure chloroform or a gold colloid in chloroform (average nanoparticle diameter of 2.5 nm) with 740-nm femtosecond pulses of 23-fs duration leads to oscillations in the differential absorption signal ΔA(λ, t) recorded using white-light continuum. The main oscillation modes for both systems are close to the chloroform Raman resonance frequencies of 260, 367, and 668 cm−1. However, marked narrowing and splitting of bands in the Fourier-transform spectra of oscillations are observed in the system of gold colloid in chloroform. The intensity of oscillations linearly increases with the pump pulse intensity in the cases of pure chloroform and the system of gold colloid in chloroform. Apparently, the principal mechanism of excitation of coherent packets in chloroform is femtosecond impulsive stimulated Raman scattering (ISRS). Dissolution of gold nanoparticles leads to a four- to sixfold enhancement of the Raman resonance signal of chloroform in the gold colloid as compared with pure chloroform. The increase in the intensity of Raman resonances is presumably due to amplification in the near field of gold nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mukamel, S., Principles of Nonlinear Optical Spectroscopy, Oxford: Oxford Univ. Press, 1995.

    Google Scholar 

  2. Kovalenko, S.A., Dobryakov, A.L., Ruthmann, J., and Ernsting, N.P., Phys. Rev. A, 1999, vol. 59, p. 2369.

    Article  CAS  Google Scholar 

  3. Stefan, A., Maier Plasmonics: Fundamentals and Applications, Berlin, Springer, 2007.

    Google Scholar 

  4. Brust, M., Walker, M., Bethell, D., and David, J., J. Chem. Soc., Chem. Commun., 1994, p. 801.

  5. Shelaev, I.V., Gostev, F.E., Mamedov, M.D., Sarkisov, O.M., Nadtochenko, V.A., Shuvalov, V.A., and Semenov, A.Yu., Biochim. Biophys. Acta, 2010, vol. 1797, p. 1410.

    Article  CAS  Google Scholar 

  6. Ushakov, E.N., Nadtochenko, V.A., Gromov, S.P., Vedernikov, A.I., Lobova, N.A., Alfimov, M.V., Gostev, F.E., Petrukhin, A.N., and Sarkisov, O.M., Chem. Phys., 2004, vol. 298, p. 251.

    Article  CAS  Google Scholar 

  7. Del Fatti, N., Voisin, C., Achermann, M., Tzortzakis, S., Christofilos, D., and Vallee, F., Phys. Rev. B: Condens. Matter., 2000, vol. 61, p. 16956.

    Article  Google Scholar 

  8. Del Fatti, N. and Vallee, F., Appl. Phys. B, 2001, vol. 73, p. 383.

    Article  Google Scholar 

  9. Herzberg, G., Infrared and Raman Spectra of Polyatomic Molecules, New York: Van Nostrand Reinhold, 1945.

    Google Scholar 

  10. Fuss, W. and Weizbauer, S., Ber. Bunsen-Ges. Phys. Chem., 1995, vol. 99, p. 289.

    CAS  Google Scholar 

  11. Cho, M., Du, M., Scherer, N.F., Fleming, G., and Mukamel, S., J. Chem. Phys., 1993, vol. 99, p. 2410.

    Article  CAS  Google Scholar 

  12. Hongxing, Xu., Xue-Hua, W., Persson, M.P., Xu, M., Kall, H.Q., and Johansson, P., Phys. Rev. Lett., 2004, vol. 93, p. 243002.

    Article  Google Scholar 

  13. Ken-ichi, Y., Tamitake, I., Hiroharu, T., Vasudevanpillai, B., Mitsuru, I., and Yukihiro, O., Phys. Rev. B: Condens. Matter, 2010, vol. 81, p. 115406.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Nadtochenko.

Additional information

Original Russian Text © A.N. Kostrov, A.V. Aybushev, F.E. Gostev, I.V. Shelayev, O.M. Sarkisov, N.N. Denisov, D.V. Khudyakov, V.A. Nadtochenko, 2011, published in Khimiya Vysokikh Energii, 2011, Vol. 45, No. 3, pp. 281–288.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostrov, A.N., Aybushev, A.V., Gostev, F.E. et al. Femtosecond pulse excitation of vibrational wave packets in chloroform: The effect of gold nanoparticles. High Energy Chem 45, 250–257 (2011). https://doi.org/10.1134/S0018143911030088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143911030088

Keywords

Navigation