Skip to main content
Log in

Tectonic Loading and Overthrust Gliding of the Pindos Nappe (NW Peloponnese): Insights from Thermochronology

  • Published:
Geotectonics Aims and scope

Abstract

The Pindos fold-and-thrust belt (PFTB) constitutes the backbone mountain range of Greece. Thermochronology allowed the quantification of the size of the orogenic bulge of Pindos on the NW Peloponnese prior to exhumation, as well as the estimation of the duration of gliding of the PFTB and the initiation of cooling (and exhumation). It follows that gliding along the basal detachment surface occurred at depths not exceeding 4 km. The inferred geometry of the PFTB prior to exhumation, perceived through the mechanical model of the Coulomb fracture theory, implies that the wedge of the thrust belt evolved in a sub-critical state during the gliding stage until ~15 Ma (Middle Miocene). Then cooling (and thus exhumation) overtook gliding. By 9 Ma (Late Miocene), exhumation had spread over the entire nappe which, since then, has been subject to erosion mainly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. B. Armijo, G. C. P. Meyer, and A. King, Rigo, and D. Papanastasiou, “Quaternary evolution of the Corinth Rift and its implications for the Late Cenozoic evolution of the Aegean,” Geophys. J. Int. 126, 11–53 (1996).

    Article  Google Scholar 

  2. C. D. Athanassas, D. I. Papanikolaou, S. Falkowski, I. D. Papanikolaou, and D. Ntokos, “Thermotectonic constraints on the geodynamic evolution of the Pindos fold-and-thrust-belt by low-temperature (U–Th)/He thermochronometry,” Geol. J. 56, 5311–5328(2021).

    Article  Google Scholar 

  3. J. Aubouin, “Contribution a l'étude géologique de la Gréce septentrional: les confins de l’épire et de la Thessalie,” Ann. Geol. Pays Hell. 10, 526 (1959).

    Google Scholar 

  4. G. E. Batt and J. Braun, “On the thermomechanical evolution of compressional orogens,” Geophys. J. Int. 128, 364–382 (1997).

    Article  Google Scholar 

  5. C. Beaumont, P. Fullsack, and J. Hamilton, “Erosional control of active compressional orogens,” in Thrust Tectonics, Ed. by K. R. McClay (Chapman & Hall, London, GB, 1992), pp. 1–31.

  6. D. Bernoulli and H. Laubscher, “The palinspastic problem of the Hellenides,” Eclogae Geol. Helv. 65, 107–118 (1972).

    Google Scholar 

  7. M. Bigot-Buschendorf, F. Mouthereau, L. Labrousse, C. Fillon, K. Stübner, K., and M. Bernet, “Unravelling the thermal evolution of the Neruokpuk Formation in the British Mountains, North Yukon, Canada: Tectonic and orogenic implications,” in Circum-Arctic Structural Events: Tectonic Evolution of the Arctic Margins and Trans-Arctic Links with Adjacent Orogens, Ed. by K. Piepjohn, J. V. Strauss, L. Reinhardt, L., and W. C. McClelland (GSA Spec. Pap., 2019, Vol. 541), pp. 1–30. https://doi.org/10.1130/2018.2541(26)

  8. D. Botor, A.A. Anczkiewicz, S. Mazur, and T. Siwecki, “Post-Variscan thermal history of the Intra-Sudetic Basin (Sudetes, Bohemian Massif) based on apatite fission track analysis,” Int. J. Earth Sci. 108, 2561–2576 (2019).

    Article  Google Scholar 

  9. M. R. Brix, B. Stöckhert, E. Seidel, T. Theye, S. N. Thomson, and M. Küster, “Thermo- barometric data from a fossil zircon partial annealing zone in high pressure–low temperature rocks of eastern and central Crete, Greece,” Tectonophysics 349, 309–326 (2002).

    Article  Google Scholar 

  10. G. Y. Brocard, P. A. van der Beek, D. L. Bourlès, L. L. Siame, and J.-L. Mugnier, “Long-term fluvial incision rates and postglacial river relaxation time in the French Western Alps from 10Be dating of alluvial terraces with assessment of inheritance, soil development and wind ablation effects,” Earth Planet. Sci. Lett. 209, 197–214 (2003).

    Article  Google Scholar 

  11. N. Creutzburg, Probleme des Gebirgbaus und der Morphogenese auf den Insel Kreta (Freiburg Univ., Germany, 1958. Vol. 26).

    Google Scholar 

  12. N. Creutzburg and J. Papastamatiou, “Die Ethia-serie des südlichen Mittelkretas und ihre Ophiolithvorkommen, ” in Sizungsberichte der Heidelberger Akad. Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse (Springer-Verlag, Berlin, 1969, Vol. 1), pp. 1–63.

    Google Scholar 

  13. F. A. Dahlen, “Non-cohesive Critical Coulomb Wedges: An exact solution,” J. Geophys. Res. 89, 10125–10133 (1984).

    Article  Google Scholar 

  14. E. A. Dahlen, J. Suppe, and D. Davis, “Mechanics of fold-and-thrust belts and accretionary wedges: Cohesive Coulomb theory,” J. Geophys. Res. 89, 10087–10101 (1984).

    Article  Google Scholar 

  15. D. Davis, J. Suppe, and F. A. Dahlen, “Mechanics of fold-and-thrust belts and accretionary wedges,” J. Geophys. Res. 88, 1153–1172 (1983).

    Article  Google Scholar 

  16. J. Dercourt, L. P. Zonenshain, L. E. Ricou, X. le Pichon, A. L. Knipper, C. Grandjaquet, I. M. Sbortshikov, J. Geussant, C. Lepvrier, D. H. Pechersku, J. Boulin, M. L. Bazhenov, J. P. Lauer, and B. Biju-Duval, “Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the Lias,” Tectonophysics 123, 241–315 (1986).

    Article  Google Scholar 

  17. P. J. Degnan and A. H. F. Roberston, “Mesozoic–Early Tertiary passive margin evolution of the Pindos ocean (NW Peloponnese, Greece),” Sediment. Geol. 117, 33–70 (1998).

    Article  Google Scholar 

  18. J. F. Dewey, W. C. Pitman, W. B. F. Ryan, and J. Bonnin, “Plate tectonics and the evolution of the Alpine system,” GSA Bull. 84, 3137–3180 (1973).

    Article  Google Scholar 

  19. T. Doutsos, I Koukouvelas, G. Poulimenos, S. Kokkalas, P. Xypolias, and K. Skourlis, “An exhumation model of the south Peloponnesus, Greece,” Int. J. Earth Sci. 89, 350–365 (2000).

    Article  Google Scholar 

  20. T. A. Ehlers, “Crustal thermal processes and the interpretation of thermochronometer data,” Rev. Mineral. Geochem. 58, 315–350 (2005).

    Article  Google Scholar 

  21. T. A. Ehlers, K. A. Farley, M. E. Rusmore, and G. J. Woodsworth, “Apatite (U–Th)/He signal of large-magnitude accelerated glacial erosion, southwest British Columbia,” Geology 34, 765–768 (2006).

    Article  Google Scholar 

  22. T. D. J. England and R. M. Bustin, “Effect of thrust faulting on organic maturation in the southeastern Canadian Cordillera,” Adv. Organic Geochem. 10, 609–616 (1985).

    Article  Google Scholar 

  23. T. D. J. England and R. M. Bustin, “Thermal maturation of the western Canadian sedimentary basin south of the Red Deer River. Part I: Alberta Plains,” Bull. Can. Petr. Geol. 34, 71–90 (1986). https://archives. datapages.com/data/cspg/data/034/034001/0071.htm.

  24. N. S. Evenson, P. W. Reiners, J. E. Spencer, and D. L. Shuster, “Hematite and Mn oxide (U–Th)/He dates from the Buckskin-Rawhide detachment system, western Arizona: Gaining insights into hematite (U–Th)/He systematics,” Am. J. Sci. 314, 1373–1435 (2014).

    Article  Google Scholar 

  25. K. A. Farley, R. A. Wolf, and L. T. Silver, “The effects of long alpha-stopping distances on (U–Th)/He ages,” Geochim. Cosmochim. Acta 60, 4223–4229 (1996).

    Article  Google Scholar 

  26. K. A. Farley, “Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite,” J. Geophys. Res.: Solid Earth 105, 2903–2914 (2000).

    Article  Google Scholar 

  27. C. Fassoulas, A. Kilias, and D. Mountrakis, “Postnappe stacking extension and exhumation of HP/LT rocks in the island of Crete, Greece,” Tectonics, 13, 127–138 (1994).

    Article  Google Scholar 

  28. R. M. Flowers, “Exploiting radiation damage control on apatite (U–Th)/He dates in cratonic regions,” Earth Planet. Sci. Lett. 277, 148–155 (2009).

  29. M. Forster and G. Lister, “Core-complex-related extension of the Aegean lithosphere initiated at the Eocene–Oligocene transition,” J. Geophys. Res.: Solid Earth, 114, B02401 (2009).

    Article  Google Scholar 

  30. C. Gautheron N. Espurt, J. Barbarand, M. Roddaz, P. Baby, S. Brusset, L. Tassangot, and E. Douville, “Direct dating of thick- and thin-skin thrusts in the Peruvian Subandean zone through apatite (U–Th)/He and fission track thermochronometry,” Basin Res. 25, 419–435 (2013).

    Article  Google Scholar 

  31. P. F. Green, P. V. Crowhurst, I. R. Duddy, P. Japsen, and S. P. Holford, “Conflicting (U–Th)/He and fission track ages in apatite: enhanced He retention, not anomalous annealing behavior,” Earth Planet. Sci. Lett. 250, 407–427 (2006).

    Article  Google Scholar 

  32. W. R. Guenthner, P. W. Reiners, R. A. Ketcham, L. Nasdala, and G. Giester, “Helium diffusion in natural zircon: Radiation damage, anisotropy, and the interpretation of zircon (U–Th)/He thermochronology,” Am. J. Sci. 313, 145–198 (2013).

    Article  Google Scholar 

  33. P. A. Hacquebard and J. R. Donaldson, “Rank studies of coals in the Rocky Mountains and inner foothills belt, Canada,” GSA Spec. Pap. 153, 75–94 (1974).

    Google Scholar 

  34. N. J. Hardebol, J. P. Callot, J. L. Faure, G. Bertotti, and F. Roure, “Kinematics of the SE Canadian fold and thrust belt: Implications for the thermal and organic maturation history,” in Thrust Belts and Foreland Basins. Frontiers in Earth Sciences, Ed. by O. Lacombe, F. Roure, J. Lavé, and J. Vergés, (Springer, Berlin, Heidelberg, Germany, 2007). http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-3-540-69426-7_10

    Google Scholar 

  35. B. W. W. Hendriks and T. F. Redfield, “Apatite fission track and (U–Th)/He data from Fennoscandia: An example of underestimation of fission track annealing in apatite,” Earth Planet. Sci. Lett. 1–2, 443–458 (2005).

    Article  Google Scholar 

  36. M. A. House, B. P. Wernicke, K. A. Farley, and T. A. Dumitru, “Cenozoic thermal evolution of the central Sierra Nevada, California, from (U-Th)/He thermochronometry,” Earth Planet. Sci. Lett. 151, 167–179 (1997).

    Article  Google Scholar 

  37. K. W. Huntington, T. A. Ehlers, K. V. Hodges, and D. M. Whipp, “Topography, exhumation pathway, age uncertainties, and the interpretation of thermochronometer data,” Tectonics 26 (4), TC4012 (2007).

    Article  Google Scholar 

  38. V. Jacobshagen, F. Duerr, K. Kockel, K.O. Kopp, G. Kowalczyk, H. Berckhemer, and D. Buttner, “Structure and geodynamic evolution of the Aegean region,” in Alps, Apennines, Hellenides, Ed. by H. Cloos, D. Roeder, and K. Schmidt (E. Schweizerbart`sche Verlagsbuchhandlung, Stuttgart, Germany, 1978), pp. 537–564.

    Google Scholar 

  39. V. Jacobshagen, Geologie von Griechenland (Gebr. Borntraeger Publ. House, Stuttgart, Germany, 1986).

    Google Scholar 

  40. L. Jolivet, B. Goffe, R. Bousquet, R. Oberhansli, and A. Michard, “Detachments in high-pressure mountain belts, Tethyan examples,” Earth Planet. Sci. Lett. 160, 31–47 (1998).

    Article  Google Scholar 

  41. L. Jolivet, J.M. Daniel, C. Truffert, and B. Goffé, “Exhumation of deep crustal metamorphic rocks and crustal extension in back-arc regions,” Lithos 33, 3–30 (1994).

    Article  Google Scholar 

  42. L. Jolivet and C. Faccenna, “Mediterranean extension and the Africa–Eurasia collision,” Tectonics 19, 1095–1106 (2000).

    Article  Google Scholar 

  43. L. Jolivet, V. Famin, C. Mehl, T. Parra, C. Aubourg, R. Hébert, and P. Philippot, “Progressive strain localisation, boudinage and extensional metamorphic complexes, the Aegean Sea case,” in Gneiss Domes in Orogeny, Ed. by D. L. Whitney, C. Teyssier, and C. S. Siddoway (GSA Spec. Pap., 2004. Vol. 380), pp. 185–210.

    Google Scholar 

  44. L. Jolivet, B. Goffé, P. Monie, C. Truffert, M. Patriat, and M. Bonneau, “Miocene detachment in Crete and exhumation P–T–t paths of high pressure metamorphic rocks,” Tectonics, 15, 1129–1153 (1996).

    Article  Google Scholar 

  45. A. Kilias, “Transpressive Tecktonik in den zentralen Helleniden. Aenderung der Translationpfade durch die Transgression Nord-Zentral Griechenland),” Neues Jahrb. Geol. Palaeontol., Monatsh. 5, 291–306 (1991).

    Google Scholar 

  46. C. Kissel and C. Laj, “The geodynamical evolution of the Aegean arc: a paleomagnetic reconstruction,” Tectonophysics 146, 183–201 (1988).

    Article  Google Scholar 

  47. S. Kokkalas and T. Doutsos, “Kinematics and strain partitioning in the southeast Hellenides, Greece,” Geol. J. 39, 121–140 (2004).

    Article  Google Scholar 

  48. J. E. Kutzbach, P. J. Guetter, W. F Ruddiman, and W. L. Prell, “The sensitivity of climate to Late Cenozoic uplift in southern Asia and the American West,” J. Geophys. Res.: Atmos. 94, 18393–18407 (1989).

    Article  Google Scholar 

  49. P. Labaume, F. Meresse, M. Jolivet, A. Teixell, and A. Lahfid, “Tectonothermal history of an exhumed thrust-sheet-top basin: An example from the south Pyrenean thrust belt,” Tectonics 35, 1280–1313 (2016). https://doi.org/10.1002/2016TC004192

    Article  Google Scholar 

  50. A. K. Laskowski, P. Kapp, L. Ding, C. Cambell, and X. Liu, “Tectonic evolution of the Yarlung suture zone, Lopu Range region, southern Tibet,” Tectonics. 36, 108–136 (2016).

    Article  Google Scholar 

  51. A. D. Leontaritis, K. Kouli, and K. Pavlopoulos, “The glacial history of Greece: A comprehensive review,” Mediterranean Geosci. Rev. 2, 65–90 (2020).

    Article  Google Scholar 

  52. X. Le Pichon and J. Angelier, “The Hellenic arc and trench system: a key to the neotectonic evolution of the eastern Mediterranean area,” Tectonophysics 60, 1–42 (1979).

    Article  Google Scholar 

  53. G. S. Lister, G. Banga, and A. Feenstra, “Metamorphic core complexes of Cordilleran type in the Cyclades. Aegean Sea, Greece,” Geology 12, 221–225 (1984).

    Article  Google Scholar 

  54. G. S. Lister, M. A. Forster, and T. J. Rawling, “Episodicity during orogenesis,” in Continental Reactivation and Reworking, Ed. by J. A. Miller, R. E. Holdsworth, I. S. Buick, and M. Hand (Spec. Publ.—Geol. Soc. London, 2001. Vol. 184), pp. 89–113.

    Google Scholar 

  55. J. Makris, “The crust and the upper mantle of the Aegean region from deep seismic sounding,” Tectonophysics 16, 269–284 (1978).

    Article  Google Scholar 

  56. I. Mariolakos and S. Stiros, “Quaternary deformation of the Isthmus and Gulf of Corinthos (Greece),” Geology 15, 225–228 (1987).

    Article  Google Scholar 

  57. A. E. Marsellos, W. S. F. Kidd, and J. I. Garver, “Extension and exhumation of the HP/LT rocks in the Hellenic fore-arc ridge,” Am. J. Sci. 310, 1–36 (2010).

    Article  Google Scholar 

  58. A. E. Marsellos, K. Min, and D. A. Foster, “Rapid exhumation of high-pressure metamorphic rocks in Kythera–Peloponnese (Greece) revealed by apatite (U–Th)/He thermochronology,” J. Geol. 122, 381–396 (2014).

    Article  Google Scholar 

  59. P. Moix, L. Beccaletto, H. W. Kozur, C. Hochard, F. Rosselet, and G. M. Stampfli, “A new classification of the Turkish terranes and sutures and its implication for the paleotectonic history of the region,” Tectonophysics 451, 7–39 (2008).

    Article  Google Scholar 

  60. P. C. Molnar, England, and J. Martinod, “Mantle dynamics, uplift of the Tibetan Plateau and the Indian monsoon,” Rev. Geophys. 31, 357–396 (1993).

    Article  Google Scholar 

  61. D. Mountrakis, “The Pelagonian zone in Greece: A polyphase-deformed fragment of the Cimmerian continent and its role in the geotectonic evolution of the eastern Mediterranean,” J. Geol. 94, 335–347 (1986).

    Article  Google Scholar 

  62. D. A. Orme, B. Carrapa, and P. Kapp, “Sedimentology, provenance and geochronology of the upper Cretaceous–lower Eocene western Xigaze fore-arc basin, southern Tibet,” Basin Res. 27 (4), 387–411 (2014)

    Article  Google Scholar 

  63. A. G. Panagos, G. G. Pe-Piper, D. J. W. Piper, and C. N. Kotopouli, “Age and stratigraphic subdivision of the Phyllite series, Krokee region, Peloponnese, Greece,” Neues Jahrb. Geol. Palaeontol., Monatsh. 3, 181–190 (1979).

    Google Scholar 

  64. D. Papanikolaou, “The three metamorphic belts of the Hellenides: A review and kinematic interpretation,” in The Geological Evolution of the Eastern Mediterranean, Ed. by J. E. Dixon and A. H. F. Robertson (Geol. Soc. London, Oxford, 1984. Vol.17), pp. 551–561.

    Google Scholar 

  65. D. Papanikolaou, L. Gouliotis, and M. Triantaphyllou, “The Itea–Amfissa detachment: A pre-Corinth rift Miocene extensional structure in central Greece,” Spec. Publ.—Geol. Soc. London 311, 293–310 (2009).

    Article  Google Scholar 

  66. D. I. Papanikolaou, “Major paleogeographic, tectonic and geodynamic changes from the last stage of the Helleindes to the actual Hellenic arc and the trench system,” Bull. Geol. Soc. Greece 43, 72–85 (2010).

    Article  Google Scholar 

  67. D. Papanikolaou, “Tectonostratigraphic models of the Alpine terranes and subduction history of the Hellenides,” Tectonophysics 595–596, 1–24 (2013).

    Article  Google Scholar 

  68. D. Papanikolaou, The Geology of Greece (Springer, Cham, Switzerland, 2021).

    Book  Google Scholar 

  69. D. Papanikolaou and L. Royden, “Disruption of the Hellenic arc: Late Miocene extensional detachment faults and steep Pliocene–Quaternary normal faults—or what happened at Corinth? Tectonics 26, 1–16 (2007).

    Article  Google Scholar 

  70. K. Pavlopoulos, A. Leontaritis, C.D. Athanassas, C. Petrakou, D. Vandarakis, K. Nikolakopoulos, L. Stamatopoulos, and K. Theodorakopoulou, “Last glacial geomorphologic records in Mt Chelmos, North Peloponnesus, Greece,” J. Mount. Sci. 15, 948–965 (2018).

    Article  Google Scholar 

  71. G. Pe-Piper and D. J. W. Piper, “Tectonic setting of the Mesozoic Pindos basin of the Peloponnese, Greece,” Spec. Publ.—Geol. Soc. London, 17 (1), 563–567 (1984). https://doi.org/10.1144/GSL.SP.1984.017.01.43

    Article  Google Scholar 

  72. G. G. Pe-Piper, “Geochemistry, tectonic setting and metamorphism of mid-Triassic volcanic rocks of Greece,” Tectonophysics 85, 253–272 (1982).

    Article  Google Scholar 

  73. N. Pinter and M. T. Brandon, “How erosion build mountains,” Sci. Am. 276, 74–79 (1997).

    Article  Google Scholar 

  74. G. Poulimemos and T. Doutsos, “Flexural uplift of rift flanks in central Greece,” Tectonics 16, 912–923 (1997).

    Article  Google Scholar 

  75. C. Renz, Die Vorneogene Sratigraphie der Normal-Sedimentaren Formationen Griechenlands (Inst. Geol. Subsurf. Res., Athens, Greece, 1955).

    Google Scholar 

  76. D. Richter, “The main flysch stages of the Hellenides,” in Alps, Apennines, Hellenides, Ed. by H. Closs, D. Roeder, and H. Schmidt (Schweizerbart, Stuttgart, Germany, 1978), pp. 434–438.

    Google Scholar 

  77. L. E. Ricou, J. P. Burg, I. Godfriaux, and Z. Ivanov, “Rhodope and Vardar: the metamorphic and the olistostromic paired belts related to the Cretaceous subduction under Europe,” Geodinam. Acta 11, 285–309 (1998).

    Article  Google Scholar 

  78. U. Ring, P. W. Layer, and T. Reischmann, “Miocene high-pressure metamorphism in the Cyclades and Crete, Aegean Sea, Greece: Evidence for large-magnitude displacement on the Cretan detachment,” Geology 29, 395–398 (2001).

    Article  Google Scholar 

  79. P. W. Reiners and M. T. Brandon, “Using thermochronology to understand orogenic erosion,” Earth Planet. Sci.: Ann. Rev. 34, 419–466 (2006).

    Article  Google Scholar 

  80. P. W. Reiners, T. L. Spell, S. Nicolescu, and K. A. Zanetti, “Zircon (U–Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating,” Geochim. Cosmochim. Acta 68, 1857–1887 (2004).

    Article  Google Scholar 

  81. P. W. Reiners, Z. Zhou, T. A. Ehlers, C. Xu, M. Brandon, R. A. Donelick, and S. Nicolescu, “Post-orogenic evolution of the Dabie Shan, eastern China, from (U–Th)/He and fission-track thermochronology,” Am. J. Sci. 303, 489–518 (2003).

    Article  Google Scholar 

  82. A. H. F. Robertson, “Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region,” Lithos 65, 1–67 (2002).

    Article  Google Scholar 

  83. A. H. F. Robertson, P. D. Clift, P. J. Degnan, and G. Jones, “Palaeogeographic and palaeotectonic evolution of the Eastern Mediterranean Neotethys,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 87, 289–343 (1991).

    Article  Google Scholar 

  84. G. Rosenbaum, G. S. Lister, and C. Duboz, “The Mesozoic and Cenozoic motion of Adria (central Mediterranean): a review of constraints and limitations,” Geodinam. Acta 17, 125–139 (2004).

    Article  Google Scholar 

  85. L. H. Royden, “Evolution of retreating subduction boundaries formed during continental collision,” Tectonics 12, 629–638 (1993).

    Article  Google Scholar 

  86. E. Schermer, “Mechanisms of blueschist creation and preservation in an A-type subduction zone, Mount Olympos, region Greece,” Geology 18, 1130–1133 (1990).

    Article  Google Scholar 

  87. E. Seidel, H. Kreuzer, and W. Harre, “The late Oligocene/Early Miocene high-pressure belt in the External Hellenides,” Geol. Jahrb. E23, 165–206 (1982).

    Google Scholar 

  88. A. M. C. Şengör, Y. Yilmaz, and O. Sungurlu, “Tectonics of the Mediterranean Cimmerides: nature and evolution of the western termination of Paleo-Tethys,” Spec. Publ.—Geol. Soc. London, 17, 77–112 (1984).

    Article  Google Scholar 

  89. H. D. Sinclair, M. Gibson, M. Naylor, and R. G. Morris, “Asymetric growth of the Pyrenees revealed through measurement and modelling of orogenic fluxes,” Am. J. Sci. 305, 369–406 (2005).

    Article  Google Scholar 

  90. K. Skourlis and T. Doutsos, “The Pindos Fold-and-thrust belt (Greece): Inversion kinematics of a passive continental margin,” Int. J. Earth Sci. (Geol. Rundsch.) 92, 891–903 (2003).

    Google Scholar 

  91. A. G. Smith and A. Rassios, “The evolution of ideas for the origin and emplacement of the western Hellenic ophiolites,” GSA Spec. Pap. 373, pp. 337–350 (2003).

    Google Scholar 

  92. S. Sotiropoulos, M. V. Triantaphyllou, E. Kamberis, and S. Tsaila-Monopolis, “Paleogene terrigenous (flysch) sequences in Etoloakarnania region (Western Greece). Plankton stratigraphy and paleoenvironmental implications,” Geobios 41, 415–433 (2008). https://doi.org/10.1016/j.geobios.2007.10.007

    Article  Google Scholar 

  93. D. F. Stockli, K. A. Farley, and T. Dumitru, “Calibration of the apatite (U–Th)/He thermochronometer on an exhumed fault block, White Mountains, California,” Geology 28, 983–986 (2000).

    Article  Google Scholar 

  94. A. G. Smith, “Alpine deformation and the oceanic a-reas of the Tethys, Mediterranean, and Atlantic,” GSA Bull. 82, 2039–2070 (1971).

    Article  Google Scholar 

  95. P. G. Temple, “Mechanics of large-scale gravity sliding in the Greek Peloponnesos,” GSA Bull. 79, 687–700 (1968).

    Article  Google Scholar 

  96. S. N. Thomson, B. Stockhert, and M. R. Brix, “Thermochronology of the high-pressure metamorphic rocks of Crete, Greece: Implications for the speed of tectonic processes,” Geology 26, 259–262 (1998).

    Article  Google Scholar 

  97. S. N. Thomson, B. Stockhert, and M. R. Brix, “Miocene high-pressure metamorphic rocks of Crete: Rapid exhumation by buoyant escape,” in Exhumation Processes: Normal Faulting, Ductile Flow and Erosion, Ed. by U. Ring, M. Brandon, G. S. Lister, and S. Willet (Spec. Publ.—Geol. Soc. London, 1999. Vol. 154), pp. 87–107.

    Google Scholar 

  98. M. Ter Voorde, C. H. De Bruijne, S. Cloetingh, and P. A. M. Andriessen, “Thermal consequences of thrust faulting: simultaneous versus successive fault activation and exhumation,” Earth Planet. Sci. Lett. 223, 395–413 (2004).

    Article  Google Scholar 

  99. M. D. Tranos, J. C. Weber, J. Bussey, and P. O’Sullivan, “Trichonis basin, western central Greece: Is it an immature basin in the Corinth Rift or pull-apart in sinistral rift-trench link?” J. Geol. Soc. 177, 120–140 (2020).

    Article  Google Scholar 

  100. B. Trawtwein, I. Dunkl, and W. Frisch, “Accretionary history of the Rhenodanubian flysch zone in the Eastern Alps—Evidence from apatite fission-track geochronology,” Int. J. Earth Sci. 90, 703–713 (2001).

    Article  Google Scholar 

  101. J. R. Underhill, “Late Cenozoic deformation of the Hellenides foreland western Greece,” GSA Bull. 101, 613–634 (1989).

    Article  Google Scholar 

  102. A. Vacherat, F. Mouthereau, R. Pik, M. Bernet, C. Gautheron, E. Masini, L. Le Pourhiet, B. Tibari, and A. Lahfid, “Thermal imprint of rift-related processes in orogens as recorded in the Pyrenees,” Earth Planet. Sci. Lett. 408, 296–306 (2014).

    Article  Google Scholar 

  103. P. G. Valla, D. L. Shuster, and van der P.A. Beek, “Significant increase in relief of the European Alps during mid- Pleistocene glaciations,” Nat. GeoSci. 4, 688–692 (2011).

    Article  Google Scholar 

  104. D. Van Hinsbergen, E. Hafkenscheid, W. Spakman, J. Meulenkamp, and R. Wortel, “Nappe stacking resulting from subduction of oceanic and continental lithosphere below Greece,” Geology 33, 325–328 (2005).

    Article  Google Scholar 

  105. D. J. J. van Hinsbergen, and S. M. Schmid, “Map view restoration of Aegean–West Anatolian accretion and extension since the Eocene,” Tectonics 31, TC5005 (2012).

    Article  Google Scholar 

  106. C. R. Walcott and S. H. White, “Constraints on the kinematics of post-orogenic extension imposed by stretching lineations in the Aegean region,” Tectonophysics 298, 155–175 (1998).

    Article  Google Scholar 

  107. H. G. Wunderlich, “Dinariden, Helleniden, Minoiden—Ammer Kungen zur vergleichenden Geodynamik des ostmeriterranen Raumes,” Neues Jahrb. Geol. Palaeontol., 1971 (9), 566–579 (1971).

    Google Scholar 

  108. S. D. Willett, “Dynamic and kinematic growth and change of a Coulomb wedge,” in Thrust Tectonics, Ed. by K. R. McClay (Springer-Nature, Darmstadt, Germany, 1992), pp. 19–31.

    Google Scholar 

  109. S. D. Willett, R. Slingerland, and N. Hovius, “Uplift, shortening and steady state topography in active mountain belts,” Am. J. Sci. 301, 455–485 (2001).

    Article  Google Scholar 

  110. R. A. Wolf, K. A. Farley, and D. M. Kass, “Modeling of the temperature sensitivity of the apatite (U–Th)/He thermochronometer,” Chem. Geol. 148, 105–114 (1998).

    Article  Google Scholar 

  111. P. Xypolias and T. Doutsos, “Kinematics of rock flow in a crustal-scale shear zone: Implication for the orogenic evolution of the southwestern Hellenides,” Geol. Mag. 137, 81–96 (2000).

    Article  Google Scholar 

  112. P. Xypolias and I. Koukouvelas, “Paleostress magnitude in a fold-thrust belt (External Hellenides, Greece): Evidence from twinning calcareous rocks,” Episodes 28, 245–25 (2005).

    Article  Google Scholar 

  113. Geological Map of Greece. Scale 1 : 50 000 (sh. “Halandritsa”, “Goumeron”, “Kertezi”, “Dafni”) IGME (Inst. Geol. Miner. Explor.). https://gaia.igme.gr/ portal/home/ (Accessed October, 2022).

Download references

ACKNOWLEDGMENTS

Authors are grateful to anonymous reviewers for helpful comments and to the editor for thorough editing.

Funding

This project was funded by the regular budget of the National Technical University of Athens (Greece).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. D. Athanassas.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athanassas, C.D., Vakalas, I. Tectonic Loading and Overthrust Gliding of the Pindos Nappe (NW Peloponnese): Insights from Thermochronology. Geotecton. 57, 100–114 (2023). https://doi.org/10.1134/S001685212301003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001685212301003X

Keywords:

Navigation