Skip to main content
Log in

The glacial history of Greece: a comprehensive review

  • Original Paper
  • Published:
Mediterranean Geoscience Reviews Aims and scope Submit manuscript

Abstract

This paper reviews the glacial history of the mountains of Greece at the southernmost tip of the Balkans, providing a new synthesis of our current understanding of glaciations. The ice cover during the largest Middle Pleistocene glaciations (MIS 12/MIS 6) was more extensive than previously thought. Latest evidence from Mt Chelmos suggests that valley glaciers radiated from a central plateau ice field, whereas the findings of other glacial studies in western Balkans further indicate that extensive ice field/ice caps formed on mountains throughout this region during the Middle Pleistocene glaciations. Ice extent was considerably smaller during the Tymphian Stage (MIS 5d–MIS 2) and this has been confirmed by cosmogenic exposure ages in recent studies on Mt Olympus and Mt Chelmos. During the Holocene, only very small glaciers formed in some deep cirques where they survived because of strong local topoclimatic controls. A comparative analysis with the findings of other glacial and palaeoclimatic studies in the Balkans is also presented to highlight correlations between them. Moisture supply seems to have been the most critical factor for the formation of glaciers in the mountains of Greece. The comparison of Late Pleistocene Equilibrium Line Altitudes (ELAs) across the Balkans indicates a wetter climate in southern Greece that can be attributed to different palaeoatmospheric circulation mechanisms and precipitation regime in central Mediterranean. Conclusively, whilst important information has been added in the last 2 decades, this paper highlights the need for further research in Greece and the wider Balkans to establish the timing and extent of glaciations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

modified from Pope et al. 2017). Some morphostratigraphical units are diachronous, like for example Unit 2 moraines that differ in age in different valleys (see Table 4)

Fig. 8
Fig. 9
Fig. 10
Fig. 11

source: Climatic Atlas of Greece—https://climatlas.hnms.gr). 1. Pindus Mountains, 2. Mt Olympus, and 3. Mt Chelmos

Fig. 12

Similar content being viewed by others

References

  • Armijo R, Meyer BG, King GP, Rigo A, Papanastassiou D (1996) Quaternary evolution of the Corinth Rift and its implications for the Late Cenozoic evolution of the Aegean. Geophys J Int 126:11–53. https://doi.org/10.1111/j.1365-246X.1996.tb05264.x

    Article  Google Scholar 

  • Bassiouka A (2011) The demographic identity of mountainous areas of Greece. Master thesis, Post-Graduate Program: Environment and Development of Mountainous Areas, National Technical University of Athens, Athens (in Greek)

  • Boenzi F, Palmentola G (1997) Glacial features and snow-line trend during the last glacial age in the Southern Apennines (Italy) and on Albanian and Greek mountains. Z Geomorphol N F Suppl 41:21–29

    Google Scholar 

  • Boenzi F, Palmentola G, Sanso P, Tromba F (1992) Le Tracce Glaciali Del Massiccio Dello Smolikas (Catena Del Pindo—Grecia). Riv Geogr Ital 99:379–393

    Google Scholar 

  • Bond G, Broecker W, Johnsen S, McManus J, Labeyrie L, Jouzel J, Bonani G (1993) Correlations between climate records from North Atlantic sediments and Greenland Ice. Nature 365:143–147. https://doi.org/10.1038/365143a0

    Article  Google Scholar 

  • Bond G, Kromer B, Beer J, Muscheler R, Evans MN, Showers W, Hoffmann S, Lotti-Bond R, Hajdas I, Bonani G (2001) Persistent solar influence on North Atlantic climate during the Holocene. Science 294:2130–2136

    Article  Google Scholar 

  • Bourcart J (1922) Les confins albanais administres par la France, Paris, p 104

  • Cacho I, Grimalt JO, Pelejero C, Canals M, Sierro FJ, Flores JA, Shackleton NJ (1999) Dansgaard-Oeschger and Heinrich event imprints in Alboran Sea palaeotemperatures. Paleoceanography 14:698–705. https://doi.org/10.1029/1999PA900044

    Article  Google Scholar 

  • Çiner A, Sarıkaya MA (2017) Cosmogenic 36Cl Geochronology of late Quaternary glaciers on the Bolkar Mountains, south central Turkey. In: Hughes P, Woodward J (eds) Quaternary glaciation in the Mediterranean Mountains. Geological Society of London Special Publication, p 433. 10.1144/SP433.3

  • Çiner A, Stepišnik U, Sarıkaya MA, Žebre M, Yıldırım C (2019) Last Glacial Maximum and Younger Dryas piedmont glaciations in Blidinje, the Dinaric Mountains (Bosnia and Herzegovina): insights from 36Cl cosmogenic dating. Mediterr Geosci Rev 1:25–43. https://doi.org/10.1007/s42990-019-0003-4

    Article  Google Scholar 

  • Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, Mitrovica JX, Hostetler SW, McCabe AM (2009) The last glacial maximum. Science 325:710–714. https://doi.org/10.1126/science.1172873

    Article  Google Scholar 

  • Cvijic J (1917) L’epoque glaciaire dans la peninsule balkanique. Ann Geogr 26:189–218

    Article  Google Scholar 

  • Faugeres L (1969) Problems created by the geomorphology of Olympus, Greece: relief, formation, and traces of Quaternary cold periods with discussion. Association Francaise pour l’Etude du Quaternaire 6:105–127

    Article  Google Scholar 

  • Federici PR, Granger DE, Ribolini A, Spagnolo M, Pappalardo M, Cyr AJ (2012) Last Glacial Maximum and the Gschnitz stadial in the Maritime Alps according to 10Be cosmogenic dating. Boreas 41:277–291. https://doi.org/10.1111/j.1502-3885.2011.00233.x

    Article  Google Scholar 

  • Florineth D, Schlüchter C (2000) Alpine evidence for atmospheric circulation patterns in Europe during the Last Glacial Maximum. Quat Res 54:295–308. https://doi.org/10.1006/qres.2000.2169

    Article  Google Scholar 

  • Giraudi C, Frezzotti M (1997) Late Pleistocene glacial events in the Central Apennines, Italy. Quat Res 48:280–290. https://doi.org/10.1006/qres.1997.1928

    Article  Google Scholar 

  • Grant KM, Rohling EJ, Bar-Matthews M, Ayalon A, Medina-Elizalde M, Bronk Ramsey C, Satow C, Roberts AP (2012) Rapid coupling between ice volume and polar temperature over the past 150,000 years. Nature 491:744–747. https://doi.org/10.1038/nature11593

    Article  Google Scholar 

  • Gromig R, Mechernich S, Ribolini A, Wagner B, Zanchetta G, Isola I, Bini M, Dunai TJ (2018) Evidence for a Younger Dryas deglaciation in the Galicica Mountains (FYROM) from cosmogenic 36Cl. Quat Int 464:352–363. https://doi.org/10.1016/j.quaint.2017.07.013

    Article  Google Scholar 

  • Hamlin RHB, Woodward JC, Black S, Macklin MG (2000) Sediment fingerprinting as a tool for interpreting long-term river activity: the Voidomatis basin, Northwest Greece. In: Foster IDL (ed) Tracers in geomorphology. Wiley, Chichester, pp 473–501

    Google Scholar 

  • Harden JW (1982) A quantitative index of soil development from field descriptions: examples from a chronosequence in central California. Geoderma 28:1–28. https://doi.org/10.1016/0016-7061(82)90037-4

    Article  Google Scholar 

  • van Hinsbergen DJJ, Edwards MA, Govers R (2009) Geodynamics of collision and collapse at the Africa–Arabia–Eurasia subduction zone—an introduction. Geol Soc Lond Spec Publ 311:1–7. https://doi.org/10.1144/SP311.1

    Article  Google Scholar 

  • Hughes PD (2004) Quaternary glaciation in the Pindus Mountains, northwest Greece. PhD thesis, University of Cambridge

  • Hughes PD (2007) Recent behaviour of the Debeli Namet glacier, Durmitor, Montenegro. Earth Surf Proc Land 10:1593–1602. https://doi.org/10.1002/esp.1537

    Article  Google Scholar 

  • Hughes PD (2010) Little Ice Age glaciers in Balkans: low altitude glaciation enabled by cooler temperatures and local topoclimatic controls. Earth Surf Proc Land 35:229–241. https://doi.org/10.1002/esp.1916

    Article  Google Scholar 

  • Hughes PD (2018) Little ice age glaciers and climate in the Mediterranean mountains: a new analysis. Cuad Invest Geogr 44:15–46

    Google Scholar 

  • Hughes PD, Gibbard PL (2015) A stratigraphical basis for the Last Glacial Maximum (LGM). Quat Int 383:174–185. https://doi.org/10.1016/j.quaint.2014.06.006

    Article  Google Scholar 

  • Hughes PD, Woodward JC (2008) Timing of glaciation in the Mediterranean mountains during the last cold stage. J Quat Sci 23:575–588. https://doi.org/10.1002/jqs.1212

    Article  Google Scholar 

  • Hughes PD, Woodward JC (2017) Quaternary glaciation in the Mediterranean mountains: a new synthesis. In: Hughes PD, Woodward JC (eds) Quaternary glaciation in the Mediterranean Mountains, vol 433. Geol. Soc. London Special Publications, pp 1–23. 10.1144/SP433.14

  • Hughes PD, Gibbard PL, Woodward JC (2003) Relict rock glaciers as indicators of Mediterranean palaeoclimate during the Last Glacial Maximum (Late Würmian) of northwest Greece. J Quat Sci 18:431–440. https://doi.org/10.1002/jqs.764

    Article  Google Scholar 

  • Hughes PD, Gibbard PL, Woodward JC (2005) Quaternary glacial records in mountain regions: a formal stratigraphical approach. Episodes 28:85–92

    Article  Google Scholar 

  • Hughes PD, Woodward JC, Gibbard PL, Macklin MG, Gilmour MA, Smith GR (2006a) The glacial history of the Pindus Mountains, Greece. J Geol 114:413–434. https://doi.org/10.1086/504177

    Article  Google Scholar 

  • Hughes PD, Woodward JC, Gibbard PL (2006b) Quaternary glacial history of the Mediterranean mountains. Prog Phys Geogr 30:334–364. https://doi.org/10.1191/0309133306pp481ra

    Article  Google Scholar 

  • Hughes PD, Woodward JC, Gibbard PL (2006c) The last glaciers of Greece. Zeitscrift Geomorphol 50:37–46

    Google Scholar 

  • Hughes PD, Woodward JC, Gibbard PL (2006d) Late Pleistocene glaciers and climate in the Mediterranean. Glob Planet Change 50:83–98. https://doi.org/10.1016/j.gloplacha.2005.07.005

    Article  Google Scholar 

  • Hughes PD, Gibbard PL, Woodward JC (2006e) Middle Pleistocene glacier behaviour in the Mediterranean: sedimentological evidence from the Pindus Mountains, Greece. J Geol Soc Lond 163:857–867. https://doi.org/10.1144/0016-76492005-131

    Article  Google Scholar 

  • Hughes PD, Gibbard PL, Woodward JC (2007) Geological controls on Pleistocene glaciations and cirque form in Greece. Geomorphology 88:242–253. https://doi.org/10.1016/j.geomorph.2006.11.008

    Article  Google Scholar 

  • Hughes PD, Woodward JC, van Calsteren PC, Thomas LE, Adamson KR (2010) Pleistocene ice caps on the coastal mountains of the Adriatic Sea: palaeoclimatic and wider palaeoenvironmental implications. Quat Sci Rev 29:3690–3708. https://doi.org/10.1016/j.quascirev.2010.06.032

    Article  Google Scholar 

  • Hughes PD, Woodward JC, van Calsteren PC, Thomas LE (2011) The glacial history of the Dinaric Alps, Montenegro. Quat Sci Rev 30:3393–3412. https://doi.org/10.1016/j.quascirev.2011.08.016

    Article  Google Scholar 

  • Hughes PD, Gibbard PL, Ehlers J (2013) Timing of glaciation during the last glacial cycle: evaluating the concept of a global ‘Last Glacial Maximum’ (LGM). Earth Sci Rev 125:171–198. https://doi.org/10.1016/j.earscirev.2013.07.003

    Article  Google Scholar 

  • IGME (Institute of Geology and Mineral Exploration) (1970) 1:50,000 Geological map of Greece. Tsepelovon Sheet. Institute of Geological and Mineral Exploration, Athens

    Google Scholar 

  • IGME (Institute of Geology and Mineral Exploration) (1987) 1:50,000 Geological map of Greece. Konitsa Sheet. Institute of Geological and Mineral Exploration, Athens

    Google Scholar 

  • Ivy-Ochs S, Kerschner H, Kubik PW, Schlüchter C (2006) Glacier response in the European Alps to Heinrich Event 1 cooling: the Gschnitz stadial. J Quat Sci 21:115–130. https://doi.org/10.1002/jqs.955

    Article  Google Scholar 

  • Ivy-Ochs S, Kerschner H, Schlüchter C (2007) Cosmogenic nuclides and the dating of Lateglacial and Early Holocene glacier variations: the Alpine perspective. Quat Int 164–165:53–63. https://doi.org/10.1016/j.quaint.2006.12.008

    Article  Google Scholar 

  • Jolivet L, Faccenna C (2000) Mediterranean extension and the Africa-Eurasia collision. Tectonics 19:1095–1106. https://doi.org/10.1029/2000TC900018

    Article  Google Scholar 

  • Jones G, Robertson AHF (1997) Tectono-stratigraphy and evolution of the Mezozoic Pindus ophiolite and related units, northwestern Greece. J Geol Soc Lond 148:267–288. https://doi.org/10.1144/gsjgs.148.2.0267

    Article  Google Scholar 

  • King G, Sturdy D, Bailey G (1997) The tectonic background to the Epirus Landscape. In: Bailey GN (ed) Klithi: palaeolithic settlement and quaternary landscapes in northwest Greece. Klithi in its local and regional setting, vol 2. MacDonald Institute for Archaeological Research, Cambridge, pp 541–558

    Google Scholar 

  • Klebelsberg RV (1932) Der Tymphrestos im Aetolischen Pindos. Jahrb Geol Bundesanst 82:17–30

    Google Scholar 

  • Kleman J, Borgström I, Skelton A, Hall A (2016) Landscape evolution and landform inheritance in tectonically active regions: the case of the Southwestern Peloponnese, Greece. Zeitschrift für Geomorphologie 60:171–193. https://doi.org/10.1127/zfg/2016/0283

    Article  Google Scholar 

  • Köse O, Sarıkaya MA, Çiner A, Candaş A (2019) Late Quaternary glaciations and cosmogenic 36Cl geochronology of Mount Dedegöl, south-west Turkey. J Quat Sci 34:51–63

    Article  Google Scholar 

  • Kuhlemann J, Rohling EJ, Krumrei I, Kubik P, Ivy-Ochs S, Kucera M (2008) Regional synthesis of Mediterranean atmospheric circulation during the last glacial maximum. Science 321:1338–1340. https://doi.org/10.1126/science.1157638

    Article  Google Scholar 

  • Kuhlemann J, Milivojevic M, Krumrei I, Kubik PW (2009) Last glaciations of the Sara range (Balkan peninsula): increasing dryness from the LGM to the Holocene. Austrian J Earth Sci 102:146–158

    Google Scholar 

  • Kuhlemann J, Gachev E, Gikov A, Nedkov S, Krumrei I, Kubik P (2013) Glaciation in the Rila mountains (Bulgaria) during the Last Glacial Maximum. Quat Int 293:51–62. https://doi.org/10.1016/j.quaint.2012.06.027

    Article  Google Scholar 

  • Kutzbach JE, Chen G, Cheng H, Edwards R, Liu Z (2014) Potential role of winter rainfall in explaining increased moisture in the Mediterranean and Middle East during periods of maximum orbitally-forced insolation seasonality. Climate Dyn 42:1079–1095. https://doi.org/10.1007/s00382-013-1692-1

    Article  Google Scholar 

  • Lewin J, Macklin MG, Woodward JC (1991) Late Quaternary fluvial sedimentation in the Voidomatis Basin, Epirus, northwest Greece. Quat Res 35:103–115. https://doi.org/10.1016/0033-5894(91)90098-P

    Article  Google Scholar 

  • Lionello P, Malanotte-Rizzoli P, Boscolo R (2006) Mediterranean climate variability. Elsevier, Amsterdam

    Google Scholar 

  • Louis H (1926) Glazialmorphologishche Beobachtungen im albanischen Epirus. Erde 1926:398–409

    Google Scholar 

  • Luetscher M, Boch R, Sodemann H, Spötl C, Cheng H, Edwards RL, Friscia S, Hof F, Müller W (2015) North Atlantic storm track changes during the Last Glacial Maximum recorded by Alpine speleothems. Nat Commun 6(6344):1–6. https://doi.org/10.1038/ncomms7344

    Article  Google Scholar 

  • Manz LA (1998) Cosmogenic 36Cl chronology for deposits of presumed Pleistocene age on the Eastern Piedmont of Mount Olympus, Pieria, Greece. Unpublished MSc thesis, Ohio University

  • Mastronuzzi G, Sanso P, Stamatopoloulos L (1994) Glacial landforms of the Peloponnisos (Greece). Riv Geogr Ital 101:77–86

    Google Scholar 

  • Maull O (1921) Beiträge zur Morphologie des Peloponnes und des sdlichen Mittelgriechenlands. Geogr Abhandlungen X(3):179–302

    Google Scholar 

  • Messerli B (1967) Die Eiszeitliche und die gegenwartige Vergletscherung im Mittelmeeraum. Geogr Helv 22:105–228

    Article  Google Scholar 

  • Milner AM, Roucoux KH, Collier REL, Müller UC, Pross J, Tzedakis PC (2016) Vegetation responses to abrupt climatic changes during the Last Interglacial Complex (Marine Isotope Stage 5) at Tenaghi Philippon, NE Greece. Quat Sci Rev 154:169–181. https://doi.org/10.1016/j.quascirev.2016.10.016

    Article  Google Scholar 

  • Mistardis G (1935) Geomorphological research in northeastern Epirus (in Greek). Athens, pp 1–33

  • Mistardis G (1937a) Sur la morphologie des parties superieures des hautes montagnes de la Grece. Reprinted from the bulletin of the first Panhellenic mountaineering Conference in Athens, pp 35–41

  • Mistardis G (1937b) Traces de glaciation dans la partie montagneuse du nord du Peloponese. Zeitschrift für Gletscher Kunde XXV:122–129

    Google Scholar 

  • Mistardis G (1937c) Recherche geomorphologique dans la partie superieure des monts Aroania (Chelmos). Reprinted from the bulletin of the first Panhellenic mountaineering Conference in Athens, pp 94–103

  • Mistardis G (1946) Aroania (Chelmos). “To Vouno”—Greek Mountaineering Club edition (in Greek), pp 37–64

  • Monegato G, Scardia G, Hajdas I, Rizzini F, Piccin A (2017) The Alpine LGM in the boreal ice-sheets game. Sci Rep 7:2078. https://doi.org/10.1038/s41598-017-02148-7

    Article  Google Scholar 

  • Müller UC, Pross J, Tzedakis PC, Gamble C, Kotthoff U, Schmiedl G, Wulf S, Christanis K (2011) The role of climate in the spread of modern humans into Europe. Quat Sci Rev 30:273–279. https://doi.org/10.1016/j.quascirev.2010.11.016

    Article  Google Scholar 

  • Nance RD (2010) Neogene-Recent extension on the eastern flank of Mount Olympus, Greece. Tectonophysics 488:282–292. https://doi.org/10.1016/j.tecto.2009.05.011

    Article  Google Scholar 

  • Niculescu C (1915) Sur les traces de glaciation dans le massif Smolica chaıne du Pinde meridional. Bulletin de la Section Scientifique de l’Academie Roumaine 3:146–151

    Google Scholar 

  • Oerlemans J (2005) Extracting a climate signal from 169 glacier records. Science 308:675–677. https://doi.org/10.1126/science.1107046

    Article  Google Scholar 

  • Ohmura A, Boetcher M (2018) Climate on the equilibrium line altitudes of glaciers: theoretical background behind Ahlmann's P/T diagram. J Glaciol 64:489–505

    Article  Google Scholar 

  • Ohmura A, Kasser P, Funk M (1992) Climate at the equilibrium line of glaciers. J Glaciol 38:397–411. https://doi.org/10.3189/S0022143000002276

    Article  Google Scholar 

  • Oliva M, Palacios D, Fernández-Fernández JM, Rodríguez-Rodríguez L, Garcia Ruiz J-M, Andrés N, Carrasco RM, Pedrazza J, Perez Alberti A, Valcarel M, Hughes PD (2019) Late Quaternary glacial phases in the Iberian Peninsula. Earth Sci Rev 192:564–600. https://doi.org/10.1016/j.earscirev.2019.03.015

    Article  Google Scholar 

  • Palmentola G, Stamatopoulos L (2006) Preliminary data about sporadic permafrost on Peristeri and Tzoumerka massifs (Pindos chain, Northwestern Greece). Rev Geom 8:17–23

    Google Scholar 

  • Palmentola G, Boenzi F, Mastronuzzi G, Tromba F (1990) Osservazioni sulle trace glaciali del M. Timfi, Catena del Pindo (Grecia). Geografia Fisica e Dinamica Quaternaria 13:165–170

    Google Scholar 

  • Panagiotopoulos K, Böhm A, Leng MJ, Wagner B, Schäbitz F (2014) Climate variability over the last 92 ka in SW Balkans from analysis of sediments from Lake Prespa. Climate Past 10:643–660. https://doi.org/10.5194/cp-10-643-2014

    Article  Google Scholar 

  • Pavlopoulos K, Leontaritis A, Athanassas CD, Petrakou C, Vandarakis D, Nikolakopoulos K, Stamatopoulos L, Theodorakopoulou K (2018) Last glacial geomorphologic records in Mt Chelmos, North Peloponnesus, Greece. J Mt Sci 15:948–965. https://doi.org/10.1007/s11629-017-4563-0

    Article  Google Scholar 

  • Pechoux PE (1970) Traces d'activité glaciaire dans les montagnes de Grèce central. Rev Geogr Alp 58:211–224. https://doi.org/10.3406/rga.1970.3465

    Article  Google Scholar 

  • Philipson A (1892) Der Peloponnes. Versuch einer Landeskunde auf geologischer Grundlage. Friedlaender & Sohn, Berlin, p 382

    Google Scholar 

  • Pirazzoli PA, Stiros SC, Fontugne M, Arnold M (2004) Holocene and Quaternary uplift in the central part of the southern coast of the Corinth Gulf (Greece). Mar Geol 212:35–44. https://doi.org/10.1016/j.margeo.2004.09.006

    Article  Google Scholar 

  • Pope RJ (2010) Linking high altitude glacier melting to Late Quaternary sedimentation in environmentally sensitive range-front alluvial fans in the Sparta Basin, southern Greece. Geophemera 108:17–23. https://geomorphology.org.uk/sites/default/files/Geophemera%20108.pdf

  • Pope RJ, Wilkinson KN (2006) Reconciling the roles of climate and tectonics in Late Quaternary fan development on the Spartan piedmont, Greece. Geol Soc Spec Publ 251:133–152. https://doi.org/10.1144/GSL.SP.2005.251.01.10

    Article  Google Scholar 

  • Pope RJ, Hughes PD, Skourtsos E (2017) Glacial history of Mount Chelmos, Peloponnesus, Greece. In: Hughes PD, Woodward JC (eds) Quaternary glaciation in the Mediterranean mountains, vol 433. Geol. Soc. London, Special Publications, pp 211–236. 10.1144/SP433.11

  • Rasmussen SO, Andersen KK, Svensson AM, Steffensen JP, Vinther BM, Clausen HB, Siggaard-Andersen M-L, Johnsen SJ, Larsen LB, Dahl- Jensen D, Bigler M, Roethlisberger R, Fischer H, Goto-Azuma K, Hansson ME, Ruth U (2006) A new Greenland ice core chronology for the last glacial termination. J Geophys Res. https://doi.org/10.1029/2005JD006079

    Article  Google Scholar 

  • Rasmussen SO, Bigler M, Blockley SP, Blunier T, Buchardt SL, Clausen HB, Cvijanovic I, Dahl-Jensen D, Johnsen SJ, Fischer H, Gkinis V, Guillevic M, Hoek WZ, Lowe JJ, Pedro JB, Popp T, Seierstad IK, Steffensen JP, Svensson AM, Vallelonga P, Vinther BM, Walker MJC, Wheatley JJ, Winstrup M (2014) A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat Sci Rev 106:14–28. https://doi.org/10.1016/j.quascirev.2014.09.007

    Article  Google Scholar 

  • Regato P, Salman R (2008) Mediterranean Mountains in a changing world. Guidelines for developing action plans. International Union for Conservation of Nature and Natural Resources, Gland

    Google Scholar 

  • Renz C (1910) Stratigraphische Untersuchungen im griechischen Mesozoikum und Paläozoikum. Wien, p 131

  • Reuther AU, Urdea P, Geiger C, Ivy-Ochs S, Niller H-P, Kubik PW, Heine K (2007) Late Pleistocene glacial chronology of the Pietrele Valley, Retezat Mountains, Southern Carpathians constrained by 10Be exposure ages and pedological investigations. Quat Int 164–165:151–169. https://doi.org/10.1016/j.quaint.2006.10.011

    Article  Google Scholar 

  • Ribolini Α, Bini Μ, Isola Ι, Spagnolo M, Zanchetta G, Pellitero R, Mechernich S, Gromig R, Dunai T, Wagner B, Milevski I (2017) An Oldest Dryas glacier expansion on Mount Pelister (Former Yugoslavian Republic of Macedonia) according to 10Be cosmogenic dating. J Geol Soc Lond 175:100–110. https://doi.org/10.1144/jgs2017-038

    Article  Google Scholar 

  • Roucoux KH, Tzedakis PC, Lawson IT, Margari V (2011) Vegetation history of the penultimate glacial period (Marine isotope stage 6) at Ioannina, north-west Greece. J Quat Sci 26:616–626. https://doi.org/10.1002/jqs.1483

    Article  Google Scholar 

  • Sadori L, Koutsodendris A, Masi A, Bertini A, Combourieu-Nebout N, Francke A, Kouli K, Joannin S, Mercuri AM, Panagiotopoulos K, Peyron O, Torri P, Wagner B, Zanchetta G, Donders TH (2016) Pollen-based paleoenvironmental and paleoclimatic change at Lake Ohrid (SE Europe) during the past 500 ka. Biogeosciences 13:1423–1437. https://doi.org/10.5194/bgd-12-15461-2015

    Article  Google Scholar 

  • Sarıkaya MA, Çiner A (2017) The late Quaternary glaciation in the Eastern Mediterranean. In: Hughes P, Woodward J (eds) Quaternary glaciation in the Mediterranean mountains. Geological Society of London Special Publication, p 433. 10.1144/SP433.4

  • Sarıkaya MA, Ciner A, Haybat H, Zreda M (2014) An early advance of glaciers on Mount Akdag˘, SW Turkey, before the global Last Glacial Maximum; insights from cosmogenic nuclides and glacier modelling. Quat Sci Rev 88:96–109. https://doi.org/10.1016/j.quascirev.2014.01.016

    Article  Google Scholar 

  • Serrano E, González-Trueba JJ, González-García M (2012) Mountain glaciation and paleoclimate reconstruction in the Picos de Europa (Iberian Peninsula, SW Europe). Quat Res 78:303–314. https://doi.org/10.1016/j.yqres.2012.05.016

    Article  Google Scholar 

  • Serrano E, González-Trueba JJ, Pellitero R, González-García M, Gómez-Lende M (2012) Quaternary glacial evolution in the Central Cantabrian Mountains (Northern Spain). Geomorphology 196:65–82. https://doi.org/10.1016/j.geomorph.2012.05.001

    Article  Google Scholar 

  • Sinopoli G, Masi A, Regattieri E, Wagner B, Francke A, Peyron O, Sadori L (2018) Palynology of the Last Interglacial Complex at Lake Ohrid: palaeoenvironmental and palaeoclimatic inferences. Quat Sci Rev 180:177–192. https://doi.org/10.1016/j.quascirev.2017.11.013

    Article  Google Scholar 

  • Sinopoli G, Peyron O, Masi A, Holtvoeth J, Francke A, Wagner B, Sadori L (2019) Pollen-based temperature and precipitation changes in the Ohrid Basin (western Balkans) between 160 and 70 ka. Climate Past 15:53–71. https://doi.org/10.5194/cp-15-53-2019

    Article  Google Scholar 

  • Smith GW, Nance RD, Genes AN (1997) Quaternary glacial history of Mount Olympus, Greece. Geol Soc Am Bull 109:809–824

    Article  Google Scholar 

  • Smith GR, Woodward JC, Heywood DI, Gibbard PL (1998) Mapping glaciated karst terrain in a Mediterranean mountain environment using SPOT and TM data. In: Burt PJA, Power CH, Zukowski PM (eds) RSS98: developing international connections, (proceedings of the remote sensing society’s annual meeting), Greenwich, September 1998, pp 457–463

  • Styllas MN, Schimmelpfennig I, Ghilardi M, Benedetti L (2016) Geomorphologic and paleoclimatic evidence of Holocene glaciation on Mount Olympus, Greece. Holocene 26:709–721. https://doi.org/10.1177/0959683615618259

    Article  Google Scholar 

  • Styllas MN, Schimmelpfennig I, Benedetti L, Ghilardi M, Aumaître G, Bourlès D, Keddadouche K (2018) Late-glacial and Holocene history of the northeast Mediterranean mountain glaciers—new insights from in situ-produced 36Cl-based cosmic ray exposure dating of paleo-glacier deposits on Mount Olympus, Greece. Quat Sci Rev 193:244–265. https://doi.org/10.1016/j.quascirev.2018.06.020

    Article  Google Scholar 

  • Tzedakis PC (1994) Vegetation change through glacial-interglacial cycles: a long pollen sequence perspective. Philos Trans R Soc Lond 345:403–432. https://doi.org/10.1098/rstb.1994.0118

    Article  Google Scholar 

  • Tzedakis PC (1999) The last climatic cycle at Kopais, central Greece. J Geol Soc 156:425–434. https://doi.org/10.1144/gsjgs.156.2.0425

    Article  Google Scholar 

  • Tzedakis PC, Lawson IT, Frogley MR, Hewitt GM, Preece RC (2002) Buffered tree population changes in a Quaternary refugium: evolutionary implications. Science 297:2044–2047. https://doi.org/10.1126/science.1080630

    Article  Google Scholar 

  • Tzedakis PC, McManus JF, Hooghiemstra H, Oppo DW, Wijmstra TA (2003) Comparison of changes in vegetation in northeast Greece with records of climate variability on orbital and suborbital frequencies over the last 450 000 years. Earth Planet Sci Lett 212:197–212. https://doi.org/10.1016/S0012-821X(03)00233-4

    Article  Google Scholar 

  • Tzedakis PC, Frogley MR, Lawson IT, Preece RC, Cacho I, de Abreu L (2004) Ecological thresholds and patterns of millennialscale climate variability: the response of vegetation in Greece during the last glacial period. Geology 32:109–112. https://doi.org/10.1130/G20118.1

    Article  Google Scholar 

  • Vogiatzakis IN (2012) Mediterranean mountain environments. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  • Wagner B, Vogel H, Francke A et al (2019) Mediterranean winter rainfall in phase with African monsoons during the past 1.36 million years. Nature 573:256–260. https://doi.org/10.1038/s41586-019-1529-0

    Article  Google Scholar 

  • Wiche K (1956) Beitrag zur Morphologie des Thessalischen Olymp. Geographischer Jahresberichtus Osterreich 26:25–40

    Google Scholar 

  • Wirth SB, Sessions AL (2016) Plant-wax D/H ratios in the southern European Alps record multiple aspects of climate variability. Quat Sci Rev 148:176–181. https://doi.org/10.1016/j.quascirev.2016.07.020

    Article  Google Scholar 

  • Woodward JC (2009) The physical geography of the mediterranean. Oxford University Press, Oxford

    Google Scholar 

  • Woodward JC, Hughes PD (2011) Glaciation in Greece: a new record of cold stage environments in the Mediterranean. In: Ehlers J, Gibbard PL, Hughes PD (eds) Quaternary glaciations—extent and chronology. A closer look. Elsevier, Amsterdam, pp 175–198. 10.1016/B978-0-444-53447-7.00015-5

  • Woodward JC, Lewin J, Macklin MG (1992) Alluvial sediment sources in a glaciated catchment: the Voidomatis basin, northwest Greece. Earth Surf Process Landf 16:205–216. https://doi.org/10.1002/esp.3290170302

    Article  Google Scholar 

  • Woodward JC, Lewin J, Macklin MG (1995) Glaciation, river behaviour and Palaeolithic settlement of upland northwest Greece. In: Lewin J, Macklin MG, Woodward JC (eds) Mediterranean quaternary river environments. Balkema, Rotterdam, pp 115–129

    Google Scholar 

  • Woodward JC, Macklin MG, Smith GR (2004) Pleistocene glaciation in the mountains of Greece. In: Ehlers J, Gibbard PL (eds) Quaternary glaciations —extent and chronology. Part I: Europe. Elsevier, Amsterdam, pp 155–73. https://doi.org/10.1016/S1571-0866(04)80066-6

  • Woodward JC, Hamlin RHB, Macklin MG, Hughes PD, Lewin J (2008) Glacial activity and catchment dynamics in northwest Greece: long-term river behaviour and the slackwater sediment record for the last glacial to interglacial transition. Geomorphology 101:44–67. https://doi.org/10.1016/j.geomorph.2008.05.018

    Article  Google Scholar 

  • Wulf S, Hardiman MJ, Staff RA, Koutsodendris A, Appelt O, Blockley SPE, Lowe JJ, Manning CJ, Ottolini L, Schmitt AK, Smith VC, Tomlinson EL, Vakhrameeva P, Knipping M, Kotthoff U, Milner AM, Müller UC, Christanis K, Kalaitzidis S, Tzedakis PC, Schmiedl G, Pross J (2018) The marine isotope stage 1–5 cryptotephra record of Tenaghi Philippon, Greece: towards a detailed tephrostratigraphic framework for the Eastern Mediterranean region. Quat Sci Rev 186:236–262. https://doi.org/10.1016/j.quascirev.2018.03.011

    Article  Google Scholar 

  • Žebre M, Sarıkaya MA, Stepišnik U, Yıldırım C, Çiner A (2019) First 36Cl cosmogenic moraine geochronology of the Dinaric mountain karst: velež and Crvanj Mountains of Bosnia and Herzegovina. Quat Sci Rev 208:54–75. https://doi.org/10.1016/j.quascirev.2019.02.002

    Article  Google Scholar 

Download references

Acknowledgements

We thank Philip Hughes (University of Manchester) for his input, advice, and editing of this paper. We also thank M. Akif Sarikaya (Istanbul Technical University) and an anonymous reviewer for their very useful and detailed reviews, which helped to improve this paper. We thank Adriano Ribolini (University of Pisa) and Matteo Spagnolo (University of Aberdeen) for the insightful discussions and advice on glacial evidence in central Greece.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Leontaritis.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leontaritis, A.D., Kouli, K. & Pavlopoulos, K. The glacial history of Greece: a comprehensive review. Med. Geosc. Rev. 2, 65–90 (2020). https://doi.org/10.1007/s42990-020-00021-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42990-020-00021-w

Keywords

Navigation