Skip to main content
Log in

Tectonic and Geodynamic Settings of Formation of the Mesozoic Cumulative Dunite–Wehrlite–Olivine Clinopyroxenite—Gabbro Massif in Eastern Chukotka

  • Published:
Geotectonics Aims and scope

Abstract

The dunite–wehrlite–clinopyroxenite–gabbro massif in Eastern Chukotka, a key object for geodynamic reconstructions of the Vel’may terrane, which represents one of the segments of the southern border of the Chukotka folded system (Chukotka microcontinent, or Arctic Alaska–Chukotka microplate), is investigated. Mineralogical and petrological–geochemical studies of rocks of this massif are carried out. A comparative analysis of the primary mineralogy and formation conditions of cumulative rocks of dunite–wehrlite–pyroxenite–gabbro assemblages from modern island-arc systems, mantle transition zones, and crustal sections of ophiolites and ancient island arcs shows that the rocks studied are cumulates crystallized from a tholeiitic melt in an intraoceanic island arc at a moderately high pressure. The 40Ar/39Ar age of magnesian hornblende from gabbro indicates the massif was formed no later than in the Early–Middle Jurassic. The petrological and geochemical modeling suggests that the analyzed olivine clinopyroxenites and gabbros are probable plutonic comagmates of the Late Triassic island-arc basalts and dolerites of the Vel’may terrane. The arc segment represented by these rocks of the Vel’may terrane was probably part of the system of island arcs which had been reconstructed in this region for the age interval of 163 to 230 Ma. In addition, there is a tendency for the rejuvenation of the Middle Triassic–Late Jurassic island-arc magmatism in the direction from west to east, namely, from the South Anyui terrane of Western Chukotka through the Vel’may terrane of Eastern Chukotka to the Angayucham terrain of Alaska.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. V. V. Akinin and E. L. Miller, “Evolution of calc-alkaline magmas of the Okhotsk-Chukotka volcanic belt,” Petrology 19, 237–277 (2011).

    Article  Google Scholar 

  2. B. A. Bazylev, G. V. Ledneva, Ya. V. Bychkova, N. N. Kononkova, T. G. Kuz’mina, and T. V. Romashova, “Estimation of content and composition of trapped melt in dunites,” Geochem. Int. 64, 509–523 (2019).

    Article  Google Scholar 

  3. B. A. Bazylev, G. V. Ledneva, and A. Ishiwatari, “High-pressure ultramafics in the lower crustal rocks of the Pekul’ney complex, central Chukchi Peninsula. 2. Internal structure of blocks and ultramafic bodies, geologic and geodynamic setting of rock formation,” Petrology 21, 336–350 (2013).

    Article  Google Scholar 

  4. B. A. Bazylev, G. V. Ledneva, N. N. Kononkova, and A. Ishiwatari, “High-pressure ultramafics in the lower crustal rocks of the Pekul’ney complex, central Chukchi Peninsula. 1. Petrography and mineralogy,” Petrology 21, 221–248 (2013).

    Article  Google Scholar 

  5. E. V. Vatrushkina, M. I. Tuchkova, and S. D. Sokolov, “Suprasubduction volcanism of Chukotka terrane in the Late Jurassic–Early Cretaceous (Arctic region, Russia),” Geotectonics 53, 713–725 (2019).

    Article  Google Scholar 

  6. A. V. Ganelin, “Geochemistry and geodynamic significance of the dike series of the Aluchin ophiolite complex, Verkhoyansk-Chukotka fold zone, Northeast Russia,” Geochem. Int. 60, 654–675 (2011).

    Article  Google Scholar 

  7. M. L. Gel’man, “Phanerozoic granite-metamorphic domes in Northeast Siberia. Pt. 1. Geological history of Paleozoic and Mesozoic domes,” Tikhookean. Geol., No. 4, 102–115 (1995).

  8. Geologic Map of the USSR and Adjacent Territories, Scale 1 : 2 500 000, Ed. by D. V. Nalivkin (VSEGEI, Leningrad, 1983).

  9. I. L. Zhulanova, The Earth’s Crust of Northeast Asia in the Precambrian and Phanerozoic (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  10. L. P. Zonenshain, M. I. Kuz’min, and L. M. Natapov, Plate Tectonics in the Territory of USSR (Nedra, Moscow, 1990), Vol. 2 [in Russian].

    Google Scholar 

  11. Yu. A. Kosygin, V. N. Voevodin, I. G. Zhitkov, and V. A. Solov’ev, “East Chukotka volcanic zone and tectonic nature of volcanogenic belts.” Dokl. Akad. Nauk SSSR 216, 885–888 (1974).

    Google Scholar 

  12. I. N. Kotlyar, I. L. Zhulanova, T. B. Rusakova, and A. M. Gagieva, Isotope Systems of Igneous and Metamorphic Complexes of Northeast Russia (Severo-Vost. Kompleks. Nauchno-Issled. Inst. Dal’nevost. Otd. Ross. Akad. Nauk, Magadan, 2001) [in Russian].

    Google Scholar 

  13. G. V. Ledneva, B. A. Bazylev, A. V. Moiseev, S. D. Sokolov, A. Ishiwatari, D. V. Kuz’min, and B. B. Belyatskii, “Ophiolitic complex of the Matachingai River on Eastern Chukotka: Fragment of lithosphere in Mesozoic back-arc basin,” Geotectonics 52, 447–467 (2018).

    Article  Google Scholar 

  14. G. V. Ledneva, B. A. Bazylev, S. D. Sokolov, and P. Leier, “Geodynamic settings of the Vel’may terrane (East Chukotka) formation,” in Fundamental Problems of Tectonics and Geodynamics: Proceedings of the ML Meeting on Tectonics, Ed. by K. E. Degtyarev (GEOS, Moscow, 2020), vol. 2, pp. 32–36.

  15. G. V. Ledneva, V. L. Pease, and B. A. Bazylev, “Late Triassic siliceous-volcano-terrigenous deposits of the Chukchi Peninsula: Composition of igneous rocks, U-Pb age of zircons, and geodynamic interpretations,” Russ. Geol. Geophys. 57, 1119–1134 (2016).

    Article  Google Scholar 

  16. B. A. Natal’in, Early Mesozoic Eugeosyncline Systems in the Northern Circum-Pacific (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  17. L. M. Parfenov, Continental Margins and Island Arcs within Mesozoides of Northeast Asia (Nauka, Novosibirsk, 1984) [in Russian].

    Google Scholar 

  18. L. M. Parfenov, L. M. Natapov, S. D. Sokolov, and N. V. Tsukanov, “Terranes and accretionary tectonics of Northeast Asia,” Geotektonika, No. 1, 68–78 (1993).

    Google Scholar 

  19. S. D. Sokolov, M. I. Tuchkova, A. V. Ganelin, G.  E. Bondarenko, and P. Layer, “Tectonics of the South Anyui suture, Northeast Asia,” Geotectonics 49, 3–26 (2015).

    Article  Google Scholar 

  20. S. D. Sokolov, M. I. Tuchkova, and G. E. Bondarenko, “A tectonic model of the South Anyui suture and its role in formation of Eastern Arctic region structures,” in Structure and Evolution of the Lithosphere, Ed. by Yu. G. Leonov (Paulsen, Moscow, 2010), pp. 204–227.

    Google Scholar 

  21. P. L. Tikhomirov, Doctoral Dissertation in Geology and Mineralogy (Moscow, 2018).

  22. M. I. Tuchkova, G. E. Bondarenko, M. I. Buyakaite, D. I. Golovin, I. O. Galuskina, and E. V. Pokrovskaya, “Deformation of the Chukchi microcontinent: Structural, lithologic, and geochronological evidence,” Geotectonics 41, 403–421 (2007).

    Article  Google Scholar 

  23. G. A. Tynankergav and Yu. M. Bychkov, “Siliceous-volcanogenic-terrigenous deposits of the western Chukotka Peninsula,” Dokl. Akad. Nauk SSSR 296, 698–700 (1987).

    Google Scholar 

  24. G. A. Tynankergav, T. A. Lanetskaya, and Yu. M. Bychkov, “Stratigraphy and petrography of the Upper Triassic terrigenous-siliceous-volcanogenic deposits of the western Chukotka Peninsula,” Vestn. Severo-Vost. Nauchn. Tsentra Dal’nevost. Otd. Ross. Akad. Nauk, Ross. Akad. Nauk, No. 3, 29–36 (2011).

    Google Scholar 

  25. A. I. Khanchuk, V. V. Golozubov, S. G. Byalobzheskii, L. I. Popenko, N. A. Goryachev, and S. M. Rodionov, “Cratonic and orogenic belts of Eastern Russia,” in Geodynamics, Magmatism, and Metallogeny of Eastern Russia, Ed. by A. I. Khanchuk (Vladivostok, Dal’nauka, 2006), Vol. 1, pp. 93–229.

    Google Scholar 

  26. V. I. Shul’diner and V. F. Nedomolkin, “Crystalline basement of the Eskimo massif,” Sov. Geol., No. 10, 33–47 (1976).

  27. J. Adam and T. Green, “Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behavior,” Contrib. Mineral. Petrol. 152, 1–17 (2006).

    Article  Google Scholar 

  28. V. V. Akinin and A. T. Calvert, “Cretaceous mid-crustal metamorphism and exhumation of the Koolen Gneiss Dome, Chukotka Peninsula, northeastern Russia.” in Tectonic Evolution of the Bering shelf–Chukchi Sea–Arctic Margin and Adjacent Landmasses, Vol. 360 of Geol. Soc. Am., Spec. Pap., E. L. Miller, A. Grantz, and S. L. Klemperer (Boulder, Colo., 2002), pp. 147–165.

  29. S. Arai, “Characterization of spinel peridotites by olivine–spinel compositional relationships: Review and interpretation,” Chem. Geol. 113, 191–204 (1994).

    Article  Google Scholar 

  30. S. Arai, “Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry,” Mineral. Mag. 56, 173–184 (1992).

    Article  Google Scholar 

  31. S. Arai, “Compositional variation of olivine–chromian spinel in Mg-rich magmas as a guide to their residual spinel peridotites,” J. Volcanol. Geotherm. Res. 59, 279–293 (1994).

    Article  Google Scholar 

  32. R. J. Arculus and K. J. A. Wills, “The petrology of plutonic blocks and inclusions from the Lesser Antilles island arc,” J. Petrol. 21, 743–799 (1980).

    Article  Google Scholar 

  33. C. Ballhaus, R. F. Berry, and D. H. Green, “High pressure experimental calibration of the olivine–orthopyroxene–spinel oxygen geobarometer: Implications for the oxidation state of the upper mantle,” Contrib. Mineral. Petrol. 107, 27–40 (1991).

    Article  Google Scholar 

  34. V. G. Batanova, G. Suhr, and A. V. Sobolev, “Origin of geochemical heterogeneity in the mantle peridotites from the Bay of Islands ophiolite, Newfoundland, Canada: Ion probe study of clinopyroxenes,” Geochim. Cosmochim. Acta 62, 853–866 (1998).

    Article  Google Scholar 

  35. J.-H. Bédard, “A procedure for calculating the equilibrium distribution of trace elements among the minerals of cumulate rocks, and the concentration of trace elements in the coexisting liquids,” Chem. Geol. 118, 143–153 (1994).

    Article  Google Scholar 

  36. J.-H. Bédard, “Trace element partitioning in plagioclase feldspar,” Geochim. Cosmochim. Acta 70, 3717–3742 (2006).

    Article  Google Scholar 

  37. Bering Strait Geologic Field Party, “Koolen metamorphic complex, NE Russia: Implications for tectonic evolution of the Bering Strait region,” Tectonics 16, 713–729 (1997).

    Article  Google Scholar 

  38. S. H. Bloomer, B. Taylor, C. J. Macleod, R. J. Stern, P. Fryer, J. W. Hawkins, and L. Johnson, “Early arc volcanism and the ophiolite problem: A perspective from drilling in the western Pacific,” in Active Margins and Marginal Basins of the Western Pacific, Vol. 88 of Am. Geophys. Union, Geophys. Monogr. Ser., Ed. by B. Taylor and J. Natland (Am. Geophys. Union, Washington, DC, 1995), pp. 1–30.

  39. G. Borghini and E. Rampone, “Postcumulus processes in oceanic-type olivine-rich cumulates: The role of trapped melt crystallization versus melt/rock interaction,” Contrib. Mineral. Petrol. 154, 619–633 (2007).

    Article  Google Scholar 

  40. G. Ceuleneer and E. le Sueur, “The Trinity ophiolite (California): The strange association of fertile mantle peridotite with ultra-depleted crustal cumulates,” Bull. Soc. Géol. Fr. 179, 503–518 (2008).

    Article  Google Scholar 

  41. B. Charlier, J. Vander Auwera, and J.-C. Dushesne, “Geochemistry of cumulates from the Bjerkreim–Sokndal layered intrusion (S. Norway): Part II. REE and the trapped liquid fraction,” Lithos 83, 255–276 (2005).

    Article  Google Scholar 

  42. W. K. Conrad and R. W. Kay, “Ultramafic and mafic inclusions from Adak Island: Crystallization history, and implications for the nature of primary magmas and crustal evolution in the Aleutian arc,” J. Petrol. 25, 88–125 (1984).

    Article  Google Scholar 

  43. S. DeBari, R.W. Kay, and S. M. Kay, “Ultramafic xenoliths from Adagdak volcano, Adak, Aleutian Islands, Alaska: Deformed igneous cumulates from the Moho of an Island Arc,” J. Geol. 95, 329–341 (1987).

    Article  Google Scholar 

  44. S. M. DeBari and R. G. Coleman, “Examination of the deep levels of an island-arc: Evidence from the Tonsina ultramafic–mafic assemblage, Tonsina, Alaska,” J. Geophys. Res., [Solid Earth Planets] 94, 4373–4391 (1989).

  45. M. T. Desta, A. Ishiwatari, S. Machi, S. Arai, A. Tamura, G. V. Ledneva, S. D. Sokolov, A. V. Moiseev, and B. A. Bazylev, “Petrogenesis of Triassic gabbroic and basaltic rocks from Chukotka, NE Russia: Eastern end of the ‘arc-type’ Siberian LIP?,” J. Mineral. Petrol. Sci. 110, 249–275 (2015).

    Article  Google Scholar 

  46. D. Elthon, J. F. Casey, and S. Komor, “Mineral chemistry from the North Arm Mountain massif of the Bay of Island ophiolite: Evidence for high-pressure fractionation of oceanic basalts,” J. Geophys. Res., B 87, 8717–8734 (1982).

  47. D. Elthon, J. F. Casey, and S. Komor, “Cryptic mineral chemistry variations in a detailed transverse through the cumulate ultramafic rocks of the North Arm Mountain massif of the Bay of Islands ophiolite, Newfoundland,” in Ophiolites and Oceanic Lithosphere, Ed. by I. G. Gass, S. J. Lippard, and A. W. Shelton (Blackwell Scientific, London, 1984), pp. 93–100.

    Google Scholar 

  48. D. Frei, A. Liebscher, G. Franz, B. Wunder, S. Klemme, and J. Blundy, “Trace element partitioning between orthopyroxene and anhydrous silicate melt on the lherzolite solidus from 1.1 to 3.2 GPa and 1.230 to 1.535°C in the model system Na2O–CaO–MgO–Al2O3–SiO2,” Contrib. Mineral. Petrol. 157, 473–490 (2009).

    Article  Google Scholar 

  49. A. Grantz, D. Sholl, J. Toro, and S. L. Klemperer, “Geologic structure of Bering and Chukchi shelves adjacent to Bering-Chukchi Deep Seismic Transect and tectonostratigraphic terranes of adjacent landmasses, scale 1 : 3 000 000. Plate 1,” in Tectonic Evolution of the Bering Shelf–Chukchi Sea–Arctic Margin and Adjacent Landmasses, Vol 360 of Geol. Soc. Am., Spec. Pap., Ed. by E. L. Miller, A. Grantz, and S. L. Klemperer (Boulder, Colo., 2002).

  50. A. R. Greene, S. M. Debari, P. B. Kelemen, J. Blusztajn, and P. D. Clift, “A detailed geochemical study of island arc crust: The Talkeetna arc section, south–central Alaska,” J. Petrol. 47, 1051–1093 (2006).

    Article  Google Scholar 

  51. Y. Harigane, K. Michibayashi, and Y. Ohara, “Amphibolitization within the lower crust in the termination area of the Godzilla Megamullion, an oceanic core complex in the Parece Vela Basin,” Island Arc 19, 718–730 (2010).

    Article  Google Scholar 

  52. Y. Harigane, K. Michibayashi, and Y. Ohara, “Deformation and hydrothermal metamorphism of gabbroic rocks within the Godzilla Megamullion, Parece Vela Basin, Philippine Sea,” Lithos 124, 185–199 (2011).

    Article  Google Scholar 

  53. Y. Harigane, K. Michibayashi, and Y. Ohara, “Shearing within lower crust during progressive retrogression: Structural analysis of gabbroic rocks from the Godzilla Mullion, an oceanic core complex in the Parece Vela backarc basin,” Tectonophysics 457, 183–196 (2008).

    Article  Google Scholar 

  54. G. R. Himmelberg and R. A. Loney, “Petrology of ultramafic and gabbroic rocks of the Canyon Mountain ophiolite,” Am. J. Sci. 280-A, 232–268 (1980).

    Google Scholar 

  55. T. Holland and J. Blundy, “Non-ideal interactions in calcic amphiboles and their bearing on amphibole–plagioclase thermometry,” Contrib. Mineral. Petrol. 116, 433–447 (1994).

    Article  Google Scholar 

  56. K. P. Jochum, B. Stoll, K. Herwig, and M. Willbold, “Validation of LA-ICP-MS trace element analysis of geological glasses using a new solid-state 193 nm Nd: YAG laser and matrix-matched calibration,” J. Anal. At. Spectrom. 22, 112–121 (2007).

    Article  Google Scholar 

  57. J. Koepke, S. Schoenborn, M. Oelze, H. Wittmann, S. T. Feig, E. Hellebrand, F. Boudier, and R. Schoenberg, “Petrogenesis of crustal wehrlites in the Oman ophiolite: Experiments and natural rocks,” Geochem. Geophys. Geosyst. 10 (2009). https://doi.org/10.1029/2009GC002488

  58. S. C. Komor, D. Elthon, and J. F. Casey, “Mineralogical variation in a layered ultramafic cumulate sequence at the North Arm Mountains massif, Bay of Island ophiolite, Newfounland,” J. Geophys. Res., [Solid Earth Planets] 90, 7705–7736 (1985).

  59. M. Kurth-Velz, A. Sassen, and S. J.-G. Galer, “Geochemical and isotopic heterogeneities along an island arc–spreading ridge intersection: Evidence from the Lewis Hills, Bay of Island ophiolite, Newfoundland,” J. Petrol. 45, 635–668 (2004).

    Article  Google Scholar 

  60. P. W. Layer, “Argon-40/argon-39 age of the El’gygytgyn impact event, Chukotka, Russia,” Meteorit. Planet. Sci. 35, 591–599 (2000).

    Article  Google Scholar 

  61. P. W. Layer, C. M. Hall, and D. York, “The derivation of 40Ar/39Ar age spectra of single grains of hornblende and biotite by laser step heating,” Geophys. Res. Lett. 14, 757–760 (1987).

    Article  Google Scholar 

  62. G. V. Ledneva, B. A. Bazylev, D. V. Kuzmin, A. Ishiwatari, N. N. Kononkova, and S. D. Sokolov, “Plutonic ultramafic–mafic complexes of the Vel’may terrane, eastern Chukotka (Russia): First petrological results and preliminary geodynamic interpretations,” Geophys. Res. Abstr. 14, Art. No. EGU2012-6195 (2012).

    Google Scholar 

  63. M. Loocke, MS Thesis (Houston, 2013).

  64. C. Marchesi, C. J. Garrido, M. Godard, F. Belley, and E. Ferré, “Migration and accumulation of ultradepleted subduction-related melts in the Massif du Sud ophiolite (New Caledonia),” Chem. Geol. 266, 180–195 (2009).

    Article  Google Scholar 

  65. I. McDougall and T. M. Harrison, Geochronology and Thermochronology by the40Ar/39Ar Method (Oxford Univ. Press, New York, 1999).

    Google Scholar 

  66. E. Melekhova, J. Blundy, R. Robertson, and C. S. Humphreys, “Experimental evidence for polybaric differentiation of primitive arc basalt beneath St. Vincent, Lesser Antilles,” J. Petrol. 56, 161–192 (2015).

    Article  Google Scholar 

  67. E. Melekhova, D. Schlaphorst, J. Blundy, J.-M. Kendall, C. Connolly, A. McCarthy, and R. Arculus, “Lateral variation in crustal structure along the Lesser Antilles arc from petrology of crustal xenoliths and seismic receiver functions,” Earth Planet. Sci. Lett. 516, 12–24 (2019).

    Article  Google Scholar 

  68. E. L. Miller, J. Toro, G. Gehrels, J. M. Amato, A. Prokopiev, M. I. Tuchkova, V. V. Akinin, T. A. Dumitru, T. E. Moore, and M. P. Cecile, “New insights into Arctic paleogeography and tectonics from U-Pb detrital zircon geochronology,” Tectonics 25 (2006). https://doi.org/10.1029/2005TC001830

  69. J. F. Molina, J. A. Moreno, A. Castro, C. Rodriguez, and G. B. Fershtater, “Calcic amphibole thermobarometry in metamorphic and igneous rocks: New calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning,” Lithos 232, 286–305 (2015).

    Article  Google Scholar 

  70. T. E. Moore, J. N. Aleinikoff, and K. R. Wirth, “Middle Jurassic U-Pb ages for Brooks Range ophiolites, Alaska,” EOS, Trans. Am. Geophys. Union 79, F807–F808 (1998).

    Google Scholar 

  71. O. Müntener, J. Hermann, and V. Trommsdorff, “Cooling history and exhumation of lower-crustal granulite and upper mantle (Malenco, Eastern Central Alps),” J. Petrol. 41, 175–200 (2000).

    Article  Google Scholar 

  72. R. H. Nandedkar, N. Hurlimann, P. Ulmer, and O. Müntener, “Amphibole–melt trace element partitioning of fractionating calc-alkaline magmas in the lower crust: An experimental study,” Contrib. Mineral. Petrol. 171, Art. No. 71 (2016). https://doi.org/10.1007/s00410-016-1278-0

    Article  Google Scholar 

  73. B. A. Natal’in, J. M. Amato, J. Toro, and J. E. Wright, “Paleozoic rocks of the Chegitun River Valley, northern Chukotka Peninsula: Insights into the tectonic evolution of the eastern Arctic,” Tectonics 18, 977–1003 (1999).

    Article  Google Scholar 

  74. P. Nimis and W. R. Taylor, “Single-clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer,” Contrib. Mineral. Petrol. 139, 541–554 (2000).

    Article  Google Scholar 

  75. W. J. Nokleberg, T. D. West, K. M. Dawson, V.  I. Shpikerman, T. K. Bundtzen, L. M. Parfenov, J. W. H. Monger, V. V. Ratkin, B. V. Baranov, S. G. Byalobzhesky, M. F. Diggles, R. A. Eremin, K. Fujita, S. P. Gordey, M. E. Gorodinskiy, et al., Summary Terrane, Mineral Deposit, and Metallogenic Belt Maps of the Russian Far East, Alaska, and the Canadian Cordillera, No. 98–136 of U.S. Geol. Surv. Open-File Rep. (1998).

  76. Y. Ohara, K. Fujioka, T. Ishii, and H. Yurimoto, “Peridotites and gabbros from the Parece Vela backarc basin: Unique tectonic window in an extinct backarc spreading ridge,” Geochem. Geophys. Geosyst. 4 (2003). https://doi.org/10.1029/2002GC000469

  77. J. A. Pearce and D. W. Peate, “Tectonic implications of the composition of volcanic arc magmas,” Annu. Rev. Earth Planet. Sci. 23, 251–285 (1995).

    Article  Google Scholar 

  78. C. Pirard, J. Hermann, and H. St. C. O’Neill, “Petrology and geochemistry of the crust–mantle boundary in a nascent arc, massif du Sud Ophiolite, New Caledonia, SW Pacific,” J. Petrol. 54, 1759–1792 (2013).

    Article  Google Scholar 

  79. M. K. Reichow, M. S. Pringle, A. I. Al’Mukhamedov, M. B. Allen, V. L. Andreichev, M. M. Buslov, C. E. Davies, G. S. Fedoseev, J. G. Fitton, S. Inger, A. Ya. Medvedev, C. Mitchell, V. N. Puchkov, I. Yu. Safonova, R. A. Scott, et al., “The timing and extent of the eruption of the Siberian traps large igneous province: Implication for the end-Permian environmental crisis,” Earth Planet. Sci. Lett. 277, 9–20 (2009).

    Article  Google Scholar 

  80. P. R. Renne, R. Mundil, G. Balco, K. Min, and K. R. Ludwig, “Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology,” Geochim. Cosmochim. Acta 74, 5349–5367 (2010).

    Article  Google Scholar 

  81. F. Ridolfi, A. Renzulli, and M. Puerini, “Stability and chemical equilibrium of amphibole in calc-alkaline magmas: An overview, new thermobarometric formulations and application to subduction-related volcanoes,” Contrib. Mineral. Petrol. 160, 45–66 (2010).

    Article  Google Scholar 

  82. S. D. Samson and E. C. Alexander, “Calibration of the interlaboratory 40Ar/39Ar dating standard, MMhb1,” Chem. Geol. 66, 27–34 (1987).

    Google Scholar 

  83. A. Sanfilippo, H. J. B. Dick, and Y. Ohara, “Melt–rock reaction in the mantle: Mantle troctolites from the Parece Vela ancient back-arc spreading center,” J. Petrol. 54, 861–885 (2013).

    Article  Google Scholar 

  84. A. Sanfilippo, H. J. B. Dick, Y. Ohara, and M. Tiepolo, “New insights on the origin of troctolites from the breakaway area of the Godzilla Megamullion (Parece Vela back-arc basin): The role of melt–mantle interaction on the composition of the lower crust,” Island Arc 25, 220–234 (2016).

    Article  Google Scholar 

  85. S. A. Shcheka, S. V. Vysotskiy, V. T. Siedin, and I. A. Tararin, “Igneous rocks of the main geological structures of the Philippine sea floor,” in Geology and Geophysics of the Philippine Sea, Ed. by H. Tokuyama, S. A. Shcheka, and N. Isezaka (Terra Scientific, Tokyo, 1995), pp. 251–278.

    Google Scholar 

  86. T. W. Sisson and T. L. Grove, “Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism,” Contrib. Mineral. Petrol. 113, 143–166 (1993).

    Article  Google Scholar 

  87. C. C. Stamper, J. D. Blundy, R. J. Arculus, and E. Melekhova, “Petrology of plutonic xenoliths and volcanic rocks from Grenada, Lesser Antilles,” J. Petrol. 55, 1353–1387 (2014).

    Article  Google Scholar 

  88. J. S. Stern., S. H. Bloomer, F. Martinez, T. Yamazaki, and T. M. Harrison, “The composition of back-arc basin lower crust and upper mantle in the Mariana trough: A first report,” The Island Arc 5, 354–372 (1996).

    Article  Google Scholar 

  89. S. S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: Implication for mantle composition and processes,” in Magmatism in the Oceanic Basins, Vol. 42 of Geol. Soc. London, Spec. Publ., Ed. by A. D. Saunders and M. J. Norry (1989), pp. 313–345.

  90. M. Tiepolo, P. Bottazzi, S. F. Foley, R. Oberti, R. Vannucci, and A. Zanetti, “Fractionation of Nb and Ta from Zr and Hf at mantle depths: The role of titanian pargasite and kaersutite,” J. Petrol. 42, 221–232 (2001).

    Article  Google Scholar 

  91. M. Tiepolo, R. Vannucci, P. Bottazzi, R. Oberti, A. Zanetti, and S. Foley, “Partitioning of rare earth elements, Y, Th, U and Pb between pargasite, kaersutite, and basanite to trachite melts: Implications for percolated and veined mantle,” Geochem. Geophys. Geosyst. 1 (2000). https://doi.org/10.1029/2000GC000064

  92. M. Tiepolo, R. Vannucci, R. Oberti, S. Foley, P. Bottazzi, and A. Zanetti, “Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite: Crystal-chemical constraints and implications for natural systems,” Earth Planet. Sci. Lett. 176, 185–201 (2000).

    Article  Google Scholar 

  93. K. R. Wirth, J. M. Bird, A. E. Blythe, and D. J. Harding, “Age and evolution of western Brooks Range ophiolites, Alaska: Results from 40Ar/39Ar thermochronology,” Tectonics 12, 410–423 (1993).

  94. S. Yamazaki, PhD Thesis (Niigata, 2014).

  95. D. York, C. M. Hall, Y. Yanase, Hanes J. A., and W. J. Kenyon, “40Ar/39Ar dating of terrestrial minerals with a continuous laser,” Geophys. Res. Lett. 8, 1136–1138 (1981).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank T.G. Kuz’mina and T.V. Romashova (Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow) for providing the analytical studies.

Funding

The research was supported by the Russian Science Foundation (grant no. 20-17-00197), by the budget state research projects (nos. 0135-2019-0078 and 0137-2019-0012) and by the state research projects for the Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Ledneva.

Additional information

Reviewer: A.A. Shchipansky

Translated by N. Astafiev

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ledneva, G.V., Bazylev, B.A., Layer, P. et al. Tectonic and Geodynamic Settings of Formation of the Mesozoic Cumulative Dunite–Wehrlite–Olivine Clinopyroxenite—Gabbro Massif in Eastern Chukotka. Geotecton. 54, 455–476 (2020). https://doi.org/10.1134/S0016852120040068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852120040068

Keywords:

Navigation