Skip to main content
Log in

Evaluation of Seismicity Triggering: Insights from the Coulomb Static Stress Changes after the 30 August 1968 Dasht-e-Bayaz Earthquake (Mw = 7.1), Eastern Iran

  • Published:
Geotectonics Aims and scope

Abstract

In this research the Coulomb stress changes due to earthquake sequence that began in the 1936 to 1997 earthquakes in Eastern Iran and their triggering effect on the rupturing of adjacent faults were investigated. Obtained results revealed a well triggering relation between main shocks and later events on the Dasht-e-Bayaz and Abiz faults, respectively. The calculated stress maps indicate that positive and negative zones of Coulomb stress changes with increasing lobes of 0.1‒1 bar are found in the off-faults tips, located at rupture terminates while the decreasing Coulomb stress lobes lie in the high angle relative to the rupture plane or relieve stress along the ruptures. Cross sections drawn respect to the source and received faults confirm the results. Also, the stress perturbations resulted from successive earthquakes and the spatial patterns of the following earthquake distribution have a good consistency. This correlation shows that the population of secondary faults and subsequent earthquakes can be encouraged in the future by coseismic Coulomb stress changes due to mainshock and background loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. M. Agh-Atabai and F. Jafari Hajati, “Coulomb stress changes and its correlation with aftershocks of recent Iranian reverse earthquakes,” Arab. J. Geosci. 7, 1‒16 (2014).

    Article  Google Scholar 

  2. N. N. Ambraseys and J. S. Tchalenko, “The Dasht-e-Bayaz (Iran) earthquake of August 31, 1968: A field report,” Bull. Seismol. Soc. Am. 59, 1751–1792 (1969).

    Google Scholar 

  3. C. Baker, PhD Thesis (Cambridge, 1993).

  4. Y. Bayrak, R. B. S. Yadav, D. Kalfat, T. M. Tsapanos, H. Çinar, A. P. Singh, E. Bayrak, Ş. Yilmaz, F. Öcal, and G. Koravos, “Seismogenesis and earthquake triggering during the Van (Turkey) 2011 seismic sequence,” Tectonophysics 601, 163–176 (2013).

    Article  Google Scholar 

  5. M. Berberian and R. S. Yeats, “Contribution of archaeological data to studies of earthquake history in the Iranian Plateau,” J. Struct. Geol. 23, 563–584 (2001).

    Article  Google Scholar 

  6. M. Berberian, Contribution to the Seismotectonics of Iran (Part II), No. 39 of Geol. Surv. Iran, Rep. (1976).

  7. M. Berberian, J. A. Jackson, M. Qorashi, M. Talebian, M. M. Khatib, and K. Priestley, “The 1994 Sefidabeh earthquakes in eastern Iran: Blind thrusting and bedding-plane slip on a growing anticline, and active tectonics of the Sistan suture zone,” Geophys. J. Int. 142, 283–299 (2000).

    Article  Google Scholar 

  8. M. Berberian, J. A. Jackson, M. Qorashi, M. M. Khatib, K. Priestley, M. Talebian, and M. Ghafuri-Ashtiani, “The 1997 May 10 Zirkuh (Qa’enat) earthquake (Mw 7 2): Faulting along the Sistan suture zone of eastern Iran,” Geophys. J. Int. 136, 671–694(1999).

    Article  Google Scholar 

  9. M. Berberian and R. S. Yeats, “Patterns of historical earthquake rupture in the Iranian Plateau,” Bull. Seismol. Soc. Am. 89, 120–139 (1999).

    Google Scholar 

  10. M. Berberian, Earthquake and Coseismic Surface Faulting on the Iranian Plateau (Elsevier, 2014).

    Google Scholar 

  11. S. Das and C. Henry, “Spatial relation between main earthquake slip and its aftershock distribution,” Rev. Geophys. 41, 1‒24 (2003).

    Article  Google Scholar 

  12. S. Das and C. H. Scholz, “Off-fault aftershock clusters caused by shear stress increase?,” Bull. Seismol. Soc. Am. 71, 1669–1675 (1981).

    Google Scholar 

  13. J. Deng and L. R. Sykes, “Triggering of 1812 Santa Barbara earthquake by a great San Andreas shock: Implications for future seismic hazards in southern California,” Geophys. Res. Lett. 23, 1155–1158 (1996).

    Article  Google Scholar 

  14. J. Deng and L. R. Sykes, “Stress evolution in southern California and triggering of moderate, small, and micro-size earthquakes,” J. Geophys. Res.: Solid Earth 102, 24411–24435 (1997).

    Article  Google Scholar 

  15. Y. Du and A. Aydin, “Stress transfer during three sequential moderate earthquakes along the central Calaveras fault, California,” J. Geophys. Res.: Solid Earth 98, 9947–9962 (1993).

    Article  Google Scholar 

  16. P. C. England and P. Molnar, “Right-lateral shear and rotation as the explanation for strike-slip faulting in eastern Tibet,” Nature 344, 140–142 (1990).

    Article  Google Scholar 

  17. M. Fattahi, R. Walker, M. Khatib, M. Zarrinkoub, and M. Talebian, “Determination of slip-rate by optical dating of lake bed sediments from the Dasht-e-Bayaz fault, NE Iran,” Geochronometria 42, 148–157 (2015).

    Article  Google Scholar 

  18. A. M. Freed, “Earthquake triggering by static, dynamic, and postseismic stress transfer,” Annu. Rev. Earth Planet. Sci. 33, 335–367 (2005).

    Article  Google Scholar 

  19. M. R. Gheitanchi, M. Kikuchi, and M. Mizoue, “Teleseismic interpretation of the 1968 Dasht-E Bayaz, NE Iran, Earthquake,” Geophys. Res. Lett. 20, 245–248 (1993).

    Article  Google Scholar 

  20. S. J. Gross and C. Kisslinger, “Stress and the spatial distribution of seismicity in the central Aleutians,” J. Geophys. Res.: Solid Earth 99, 15291–15303 (1994).

    Article  Google Scholar 

  21. J. L. Hardebeck, J. J. Nazareth, and E. Hauksson, “The static stress change triggering model: Constraints from two southern California aftershock sequences,” J. Geophys. Res.: Solid Earth 103, 24427–24437 (1998).

    Article  Google Scholar 

  22. R. A. Harris, R. W. Simpson, and P. A. Reasenberg, “Influence of static stress changes on earthquake locations in southern California,” Nature 375, 221–224 (1995).

    Article  Google Scholar 

  23. R. Harris, “Introduction to special section: Stress triggers, stress shadow, and implications for seismic hazard,” J. Geophys. Res.: Solid Earth 103, 24347–24358 (1998).

    Article  Google Scholar 

  24. R. A. Harris and R. W. Simpson, “Changes in static stress on southern California faults after the 1992 Landers earthquake,” Nature 360, 251–254 (1992).

    Article  Google Scholar 

  25. R. A. Harris and R. W. Simpson, “In the shadow of 1857-effect of the great Ft. Tejon earthquake on subsequent earthquakes in southern California,” Geophys. Res. Lett. 23, 229–232 (1996).

    Article  Google Scholar 

  26. S. Hainzl, S. Steacy, and D. Marsan, Seismicity models based on Coulomb stress calculations. http://www. corssa.org/export/sites/corssa/.galleries/articles-pdf/ Hainzl-et-al-2010-CORSSA-Coulomb-models.pdf. Accessed July 1, 2019.

  27. O. Heidbach, J. Reinecker, M. Tingay, B. Müller, B. Sperner, K. Fuchs, and F. Wenzel, “Plate boundary forces are not enough: Second- and third-order stress patterns highlighted in the World Stress Map database,” Tectonics 26 (2007). https://doi.org/10.1029/2007TC002133

    Article  Google Scholar 

  28. W. E. Holt, J. F. Ni, T. C. Wallace, and A. J. Haines, “The active tectonics of the eastern Himalayan Syntaxis and surrounding regions,” J. Geophys. Res.: Solid Earth 96, 14595–14632 (1991).

    Article  Google Scholar 

  29. K. W. Hudnut, L. Seeber, and J. Pacheco, “Cross-fault triggering in the November 1987 Superstition Hills earthquake sequence, southern California,” Geophys. Res. Lett. 16, 199–202 (1989).

    Article  Google Scholar 

  30. T. Ishibe, K. Shimazaki, H. Tsuruoka, Y. Yamanaka, and K. Satake, “Correlation between Coulomb stress changes imparted by large historical strike-slip earthquakes and current seismicity in Japan,” Earth, Planets Space 63, 301–314 (2011).

    Article  Google Scholar 

  31. J. Jackson and D. P. McKenzie, “Active tectonics of Alpine–Himalayan belt between western Turkey and Pakistan,” Geophys. J. R. Astrophys. Soc. 77, 185–264 (1984).

    Article  Google Scholar 

  32. J. Jackson, “Living with earthquakes: Know your faults,” J. Earthquake Eng. 5, 5–123 (2001).

    Google Scholar 

  33. J. Jackson and D. P. McKenzie, “The relationship between plate motions and seismic moment tensors, and the rates of active deformation in the Mediterranean and Middle East,” Geophys. J. 93, 45–73 (1988).

    Article  Google Scholar 

  34. S. C. Jaumré and L. R. Sykes, “Change in the state of stress on the southern San Andreas fault resulting from the California earthquake sequence of April to June 1992,” Science 258, 1325–1328 (1992).

    Article  Google Scholar 

  35. V. G. Karakostas, E. E. Papadimitriou, G. F. Karakaisis, C. B. Papazachos, E. M. Scordilis, G. Vargemezis, and E. Aidona, “The 2001 Skyros, Northern Aegean, Greece, earthquake sequence: Off-fault aftershocks, tectonic implications and seismicity triggering,” Geophys. Res. Lett. 30, 1‒4 (2003).

    Article  Google Scholar 

  36. G. C. P. King, R. S. Stein, and J. Lin, “Static stress changes and the triggering of earthquakes,” Bull. Seismol. Soc. Am. 84, 935– 953 (1994).

    Google Scholar 

  37. G. C. P. King and M. Cocco, “Fault interaction by elastic stress changes: New clues from earthquake sequences,” Adv. Geophys. 44, 1–36 (2000).

    Google Scholar 

  38. M. Leonard, “Earthquake fault scaling: Self-consistent relating of rupture length, width, average displacement, and moment release,” Bull. Seismol. Soc. Am. 100, 1971–1988 (2010).

    Article  Google Scholar 

  39. J. Lin, R. S. Stein, M. Meghraoui, Sh. Toda, A. Ayadi, C. Dorbath, and S. Belabbes, “Stress transfer among en echelon and opposing thrusts and tear faults: Triggering caused by the 2003 M w = 6.9 Zemmouri, Algeria, earthquake,” J. Geophys. Res.: Solid Earth 116 (2011). https://doi.org/10.1029/2010JB007654

  40. J. Lin and R. S. Stein, “Stress triggering in thrust and subduction earthquakes, and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults,” J. Geophys. Res.: Solid Earth 109 (2004). https://doi.org/10.1029/2003JB002607

  41. K. F. Ma, C. H. Chan, and R. S. Stein, “Response of seismicity to Coulomb stress triggers and shadows of the 1999 M w = 7.6 Chi–Chi, Taiwan, earthquake,” J. Geophys. Res.: Solid Earth 110 (2005). https://doi.org/10.1029/2004JB003389

  42. J. McCloskey, S. S. Nalbant, and S. Steacy, “Indonesian earthquake: Earthquake risk from co-seismic stress,” Nature 434, 291 (2005).

    Article  Google Scholar 

  43. B. Meyer and K. Le Dortz, “Strike–slip kinematics in Central and Eastern Iran: Estimating fault slip-rates averaged over the Holocene,” Tectonics 26 (2007). https://doi.org/10.1029/2006TC002073

    Article  Google Scholar 

  44. C. Mendoza and S. H. Hartzell, “Aftershock patterns and main shock faulting,” Bull. Seismol. Soc. Am. 78, 1438–1449 (1988).

    Google Scholar 

  45. C. Milkereit, H. Grosser, R. Wang, H. U. Wetzel, H. Woith, S. Karakisa, S. Zunbul, and J. Zscau, “Implications of the 2003 Bingoel earthquake for the interaction between the North and East Anatolian faults,” Bull. Seismol. Soc. Am. 94, 2400–2406 (2004).

    Article  Google Scholar 

  46. F. Masson, J. Chery, D. Hatzfeld, J. Martinod, P. Vernant, F. Tavakoli, and M. Ghafory Ashtiani, “Seismic versus aseismic deformation in Iran inferred from earthquakes and geodetic data,” Geophys. J. Int. 160, 217–226 (2005).

    Article  Google Scholar 

  47. C. Mitsakaki, Th. Rondoyanni, D. Anastasiou, K. Papazissi, A. Marinou, and M. Sakellariou, “Static stress changes and fault interactions in Lefkada Island, Western Greece,” J. Geodyn. 67, 53‒61 (2012).

    Article  Google Scholar 

  48. A. Mohajer-Ashjai, A. A. Nowroozi, Gh. Taghi-Zadeh, and A. A. Zohurian-Izadpanah, A Report on the Twin Earthquakes in Qayenat, Report No. 122 of Atomic Energy Organisation of Iran (Tehran, 1981), pp. 149‒160 (in Persian).

  49. H. Mohammadi and Y. Bayrak, “The Mw 6.3 Shonbeh (Bushehr) mainshock, and its aftershock sequence: Tectonic implications and seismicity triggering,” East. Anatolia J. Sci. 1, 43–56 (2015).

    Google Scholar 

  50. S. S. Nalbant, S. Steacy, K. Sieh, D. Natawidjaja, and J. McCloskey, “Earthquake risk on the Sunda trench,” Nature 435, 756‒757 (2005).

    Article  Google Scholar 

  51. M. Niazi, “Source dynamics of the Dasht-e Bayaz earthquake of August 31, 1968,” Bull. Seismol. Soc. Am. 59, 1843‒1861 (1969).

    Google Scholar 

  52. A. A. Nowroozi and A. Mohajer-Ashjai, “Fault movements and tectonics of eastern Iran: Boundaries of the Lut plate,” Geophys. J. R. Astron. Soc. 83, 215–237 (1985).

    Article  Google Scholar 

  53. A. A. Nowroozi and A. Mohajer-Ashjai, “Faulting of Kurizan and Koli (Qaenat Iran) earthquakes of November 1979: A field report,” Bull. Iran. Pet. Inst. 78, 8–20 (1980).

    Google Scholar 

  54. E. E. Papadimitriou, “Mode of strong earthquake recurrence in the central Ionian Islands (Greece): Possible triggering due to Coulomb stress changes generated by the occurrence of previous strong shocks,” Bull. Seismol. Soc. Am. 92, 3293–3308 (2002).

    Article  Google Scholar 

  55. E. E. Papadimitriou and L. R. Sykes, “Evolution of stress field in the Northern Aegean Sea (Greece),” Geophys. J. Int. 146, 747–759 (2001).

    Article  Google Scholar 

  56. S. Rajput, V. K. Gahalaut, and V. K. Sahu, “Coulomb stress changes and aftershocks of recent Indian earthquakes,” Current Sci. 88, 576–588 (2005).

    Google Scholar 

  57. P. A. Reasenberg and R. W. Simpson, “Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake,” Science 255, 1687–1690 (1992).

    Article  Google Scholar 

  58. E. Roeloffs, “Poroelastic techniques in the study of earthquake-related hydrologic phenomena,” Adv. Geophys. 37, 135–195 (1996).

    Article  Google Scholar 

  59. Kh. Sarkarinejad and Sh. Ansari, “The Coulomb stress change and seismicity rate due to the 1990 Rudbar M 7.3 earthquake,” Bull. Seismol. Soc. Am. 104, 2943‒2952 (2014).

    Article  Google Scholar 

  60. C. H. Scholz, The Mechanics of Earthquakes and Faulting, 2nd ed. (Cambridge Univ. Press, Cambridge, 2002).

    Book  Google Scholar 

  61. B. Shan, X. Xiong, Y. Zheng, Sh. Wei, Y. Wen, B. Jin, and C. Ge, “The co-seismic Coulomb stress change and expected seismicity rate caused by 14 April 2010 Ms = 7 1 Yushu, China, earthquake,” Tectonophysics 510, 345–353 (2011).

    Article  Google Scholar 

  62. R. W. Simpson and P. A. Reasenberg, “Earthquake-induced static stress changes on central California faults,” in The Loma Prieta, California Earthquake of October 17, 1989—Tectonic Process and Models (U.S. Geol. Surv., Prof. Pap. 1550-F), Ed. by R. W. Simpson (1994).

    Google Scholar 

  63. S. Steacy, J. Gomberg, and M. Cocco, “Introduction to special section: Stress transfer, earthquake triggering, and time-dependent seismic hazard,” J. Geophys. Res.: Solid Earth 110 (2005). https://doi.org/10.1029/2005JB003692

  64. R. S. Stein, A. A. Barka, and J. H. Dieterich, “Progressive failure on the North Anatolian fault since 1939 by earthquake static stress triggering,” Geophys. J. Int. 128, 594–604 (1997).

    Article  Google Scholar 

  65. R. Stein, “The role of stress transfer in earthquake occurrence,” Nature 402, 605–609 (1999).

    Article  Google Scholar 

  66. R. S. Stein, G. C. P. King, and J. Lin, “Change in failure stress on the southern San Andreas fault system caused by the 1992 magnitude = 7.4 Landers earthquake,” Science 258, 1328‒1332 (1992).

    Article  Google Scholar 

  67. R. S. Stein, G. C. P. King, and J. Lin, “Stress triggering of the 1994 M = 6.7 Northridge, California, earthquake by its predecessors,” Science 265, 1432‒1435 (1994).

    Article  Google Scholar 

  68. J. S. Tchalenko and M. Berberian, “Dasht-e Bayaz Fault, Iran: Earthquake and earlier related structures in bed rock,” Geol. Soc. Am. Bull. 86, 703‒709 (1975).

    Google Scholar 

  69. R. Tirrul, I. R. Bell, R. J. Griffis, and V. E. Camp, “The Sistan Suture Zone of eastern Iran,” Geol. Soc. Am. Bull. 94, 134–150 (1983).

    Article  Google Scholar 

  70. S. Toda, R. S. Stein, K. Richards-Dinger, and S. Bozkurt, “Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer,” J. Geophys. Res.: Solid Earth 110 (2005). https://doi.org/10.1029/2004JB003415

  71. S. Toda, R. S. Stein, P. A. Reasenberg, and J. H. Dieterich, “Stress transferred by the Mw = 6.5 Kobe, Japan, shock: Effect on aftershocks and future earthquake probabilities,” J. Geophys. Res.: Solid Earth 103, 24543–24565 (1998).

    Article  Google Scholar 

  72. S. Toda, “Coulomb stresses imparted by the 25 March M w = 6.6 Noto-Hanto, Japan, earthquake explain its ‘butterfly’ distribution of aftershocks and suggest a heightened seismic hazard,” Earth, Planets Space 60, 1041–1046 (2008).

    Article  Google Scholar 

  73. S. Toda, R. S. Stein, V. Sevilgen, and J. Lin, Coulomb 3.3 Graphic Rich Deformation and Stress-Change Software for Earthquake, Tectonic, and Volcano Research and Teaching-User Guide, U.S. Geol. Surv. Open-File Rep. 2011–1060 (2011).

    Google Scholar 

  74. M. Utkucu, “23 October 2011 Van, Eastern Anatolia, earthquake (M W 7 1) and seismotectonics of Lake Van area,” J. Seismol. 17, 783–805 (2013).

    Article  Google Scholar 

  75. P. Vernant, F. Nilforoushan, D. Hatzfeld, M. R. Abbasi, C. Vigny, F. Masson, H. Nankali, J. Martinod, A. Ashtiani, R. Bayer, F. Tavakoli, and J. Chery, “Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurement in Iran and northern Oman,” Int. J. Geophys. 157, 381–398 (2004).

    Article  Google Scholar 

  76. R. T. Walker, E. A. Bergman, W. Szeliga, and E. J. Fielding, “Insights into the 1968–1997 Dasht-e-Bayaz and Zirkuh earthquake sequences, eastern Iran, from calibrated relocations, InSAR and high-resolution satellite imagery,” Geophys. J. Int. 187, 1577–1603 (2011).

    Article  Google Scholar 

  77. R. T. Walker and J. Jackson, “Active tectonics and late Cenozoic strain distribution in central and eastern Iran,” Tectonics 23 (2004). https://doi.org/10.1029/2003TC001529

    Article  Google Scholar 

  78. R. T. Walker, M. M. Khatib, A. Bahroudi, A. Rodes, C. Schnabel, M. Fattahi, M. Talebian, and E. Bergman, “Co-seismic, geomorphic, and geologic fold growth associated with the 1978 Tabas-e-Golshan earthquake fault in eastern Iran,” Geomorphology 237, 98–118 (2013).

    Article  Google Scholar 

  79. R. Walker and J. Jackson, “Offset and evolution of the Gowk fault, S E Iran: A major intracontinental strike-slip system,” J. Struct. Geol. 24, 1677–1698 (2002).

    Article  Google Scholar 

  80. R. Walker, J. Jackson, and C. Baker, “Active faulting and seismicity of the Dasht-e-Bayaz region, eastern Iran,” Geophys. J. Int. 157, 265–282 (2004).

    Article  Google Scholar 

  81. R. Walker, J. Jackson, and C. Baker, “Thrust faulting in eastern Iran: Source parameters and surface deformation of the 1978 Tabas and 1968 Ferdows earthquake sequences,” Geophys. J. Int. 152, 749–765 (2003).

    Article  Google Scholar 

  82. A. Walpersdorf, I. Manighetti, Z. Mousavi, F. Tavakoli, M. Vergnolle, A. Jadidi, D. Hatzfeld, A. Aghamohammadi, A. Bigot, Y. Djamour, H. Nankali, and M. Sedighi, “Present-day kinematics and fault slip rates in eastern Iran, derived from 11 years of GPS data,” J. Geophys. Res: Solid Earth. 119, 1359‒1383 (2014).

    Article  Google Scholar 

  83. J. C. Wang, C. F. Shieh, and T. M. Chang, “Static stress changes as a triggering mechanism of a shallow earthquake: Case study of the 1999 Chi-Chi (Taiwan) earthquake,” Phys. Earth Planet. Inter. 135, 17–25 (2003).

    Article  Google Scholar 

  84. W. H. Wang and C. H. Chen, “Static stress transferred by the 1999 Chi-Chi, Taiwan, earthquake: Effects on the stability of the surrounding fault systems and aftershock triggering with a 3D fault-slip model,” Bull. Seismol. Soc. Am. 91, 1041–1052 (2001).

    Article  Google Scholar 

  85. R. B. S. Yadav, V. K. Gahalaut, S. Chopra, and B. Shan, “Tectonic implications and seismicity triggering during the 2008 Baluchistan, Pakistan earthquake sequence,” J. Asian. Earth. Sci. 45, 167–178 (2012).

    Article  Google Scholar 

  86. R. B. S. Yadav, E. E. Papadimitriou, V. G. Karakostas, D. Shanker, B. K. Rastogi, S. Chopra, A. P. Singh, and K. Santosh, “The 2007 Talala, Saurashtra, western India earthquake sequence: Tectonic implications and seismicity triggering,” J. Asian Earth. Sci. 40, 303–314 (2011).

    Article  Google Scholar 

  87. Z. Zarifi, F. Nilfouroushan, and M. Raeesi, “Crustal stress map of Iran: Insight from seismic and geodetics computations,” Pure Appl. Geophys. 171, 1219–1236 (2013).

    Article  Google Scholar 

  88. A. Ziv and A. M. Rubin, “Static stress transfer and earthquake triggering: No lower threshold in sight?,” J. Geophys. Res.: 105, 13 631–13 642 (2000).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank Dr. Ali Faghih (Shiraz university, Shiraz, Iran) and Dr. Behnam maleki Asayesh (International Institute of Earthquake Engineering and Seismology, Tehran, Iran) for critical reading our manuscript that helped us improve its scientific content and presentation. We are grateful to Dr. Saeede Keshavarz (University of Advanced Technology, Kerman, Iran) for constructive comments. Important financial and technical support by the Research Council of the University of Birjand (Birjand, Iran) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Zarei.

Additional information

Reviewer: E.A. Rogozhin

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarei, S., Khatib, M.M., Zare, M. et al. Evaluation of Seismicity Triggering: Insights from the Coulomb Static Stress Changes after the 30 August 1968 Dasht-e-Bayaz Earthquake (Mw = 7.1), Eastern Iran. Geotecton. 53, 601–616 (2019). https://doi.org/10.1134/S0016852119050078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852119050078

Keywords:

Navigation