Skip to main content
Log in

Generation Model of a Spatially Limited Vortex in a Stratified Unstable Atmosphere

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

This paper presents a new model for the generation of axisymmetric concentrated vortices. The solution of a nonlinear equation for internal gravity waves in an unstable stratified atmosphere is obtained and analyzed within the framework of ideal hydrodynamics. The corresponding expressions describing the dependences on the radius for the radial and vertical velocity components in the inner and outer regions of the vortex include combinations of Bessel functions and modified Bessel functions. The proposed new nonlinear analytical model makes it possible to study the structure and nonlinear dynamics of vortices in the radial and vertical regions. The vortex is limited in height. The maximum vertical velocity component is reached at a certain height. Below this height, radial flows converge towards the axis, and above it, an outflow occurs. The resulting instability in the stratified atmosphere leads to an increase in the radial and vertical velocity components according to the hyperbolic sine law, which turns into exponential growth. The characteristic growth time is determined by the inverse growth rate of the instability. The formation of vortices with finite velocity components, which increase with time, is analyzed. The radial structure of the azimuthal velocity is determined by the structure of the initial perturbation and can change with height. The maximum rotation is reached at a certain height. The growth of the azimuth velocity occurs according to a super-exponential law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Balme, M. and Greeley, R., Dust devils on Earth and Mars, Rev. Geophys., 2006, p. RG3003.

  2. Battaglia, F., Rehm, R.G., and Baum, H.R., The fluid mechanics of fire whirls: An inviscid model, Phys. Fluids, 2000, vol. 12, pp. 2859–2867.

    Article  Google Scholar 

  3. Church, C.R., Snow, J.T., Baker, G.L., and Agee, E.M., Characteristics of tornado-like vortices as a function of swirl ratio: A laboratory investigation, J. Atmos. Sci., 1979, vol. 36, pp. 1755–1776.

    Article  Google Scholar 

  4. Horton, W., Miura, H., Onishchenko, O., Couedel, L., Arnas, C., Escarguel, A., Benkadda, S., and Fedun, V., Dust devil dynamics, J. Geophys. Res.: Atmos., 2016, vol. 121, pp. 7197–7214.

    Article  Google Scholar 

  5. Ives, R.L., Behavior of dust devils, Bull. Am. Meteorol. Soc., 1947, vol. 28, pp. 168–174.

    Article  Google Scholar 

  6. Justice, A.A., Seeing the inside of a tornado, Mon. Weather Rev., 1930, vol. 58, no. 5, pp. 205–206.

    Article  Google Scholar 

  7. Larichev, V.D. and Reznik, G.M., On two-dimensional solitary Rossby waves, Dokl. Akad. Nauk SSSR, 1976, vol. 231, pp. 1077–1079.

    Google Scholar 

  8. Nalivkin, D.V., Hurricanes, storms, and tornadoes, in Geographic Characteristics and Geological Activity, Rotterdam: A.A. Balkema, 1983.

    Google Scholar 

  9. Onishchenko, O.G., Horton, W., Pokhotelov, O.A., and Stenflo, L., Dust devil generation, Phys. Scr., 2014, vol. 89, p. 075606.

    Article  Google Scholar 

  10. Onishchenko, O., Pokhotelov, O., Horton, W., and Fedun, V., Dust devil vortex generation from convective cells, Ann. Geophys., 2015, vol. 33, pp. 1343–1347.

    Article  Google Scholar 

  11. Onishchenko, O.G., Horton, W., Pokhotelov, O.A., and Fedun, V., Explosively growing vortices of unstably stratified atmosphere, J. Geophys. Res.:: Atmos., 2016, vol. 121, pp. 11–264.

    Article  Google Scholar 

  12. Onishchenko, O.G., Pokhotelov, O.A., Astaf’eva, N.M., Horton, W., and Fedun, V.N., Structure and dynamics of concentrated mesoscale vortices in planetary atmospheres, Phys.-Usp., 2020, vol. 63, pp. 683–697.

    Article  Google Scholar 

  13. Raasch, S. and Franke, T., Structure and formation of dust devil-like vortices in the atmospheric boundary layer: A high-resolution numerical study, J. Geophys. Res.: Atmos., 2011, vol. 116, p. D16120.

    Article  Google Scholar 

  14. Rafkin, S., Jemmett-Smith, B., Fenton, L., Lorenz, R., Takemi, T., Ito, J., and Tyler, D., Dust devil formation, Space Sci. Rev., 2016, vol. 203, pp. 183–207.

    Article  Google Scholar 

  15. Rennó, N.O., Burkett, M.L., and Larkin, M.P., A simple thermodynamical theory for dust devils, J. Atmos. Sci., 1998, vol. 55, pp. 3244–3252.

    Article  Google Scholar 

  16. Rennó, N.O., Abreu, V.J., Koch, J., Smith, P.H., Hartogensis, O.K., De Bruin, H.A.R., Burose, D., Delory, G.T., Farrell, W.M., and Watts, C.J., MATADOR 2002: A pilot field experiment on convective plumes and dust devils, J. Geophys. Res.: Planets, 2004, vol. 109, p. E07001.

    Google Scholar 

  17. Sinclair, P.C., General characteristics of dust devils, J. Appl. Meteorol., 1969, vol. 8, pp. 32–45.

    Article  Google Scholar 

  18. Sinclair, P.C., The lower structure of dust devils, J. Atmos. Sci., 1973, vol. 30, pp. 1599–1619.

    Article  Google Scholar 

  19. Stenflo, L., Acoustic solitary vortices, Phys. Fluids, 1987, vol. 30, pp. 3297–3299.

    Article  Google Scholar 

  20. Stenflo, L., Acoustic gravity vortices, Phys. Scr., 1990, vol. 41, p. 641.

    Article  Google Scholar 

  21. Thorarinsson, S. and Vonnegut, B., Whirlwinds produced by the eruption of Surtsey Volcano, Bull. Am. Meteorol. Soc., 1964, vol. 45, no. 8, pp. 440–444.

    Article  Google Scholar 

  22. Tohidi, A., Gollner, M.J., and Xiao, H., Fire whirls, Annu. Rev. Fluid Mech., 2018, vol. 50, pp. 187–213.

    Article  Google Scholar 

Download references

Funding

The work was supported by the State task of the Institute of Physics of the Earth Russian Academy of Sciences and the state task on the “Monitoring” subject of fundamental scientific research of IKI RAS (122042500031-8).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. G. Onishchenko, S. N. Artekha, F. Z. Feygin or N. M. Astafieva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onishchenko, O.G., Artekha, S.N., Feygin, F.Z. et al. Generation Model of a Spatially Limited Vortex in a Stratified Unstable Atmosphere. Geomagn. Aeron. 63, 464–472 (2023). https://doi.org/10.1134/S0016793223600340

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793223600340

Navigation