Skip to main content
Log in

A model of generation of a jet in stratified nonequilibrium plasma

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In the magnetohydrodynamic approximation, system of equations is proposed which analytically describes the initial stage of origination of axially symmetric directed flows in nonequilibrium stratified plasma. The mechanism of generation is based on the Schwarzschild’s convective instability and uses the frozen-in flux condition for magnetic field lines. A solution to the nonlinear equation for the stream function is obtained and analyzed, and it is shown that jets with poloidal velocity fields are generated in such a plasma. The corresponding expressions for the R dependences of the radial and vertical velocity components in the internal and external regions of the jet include Bessel functions and modified Bessel functions. For jets localized in height and radius, the proposed new nonlinear analytical model makes it possible to study their structure and nonlinear dynamics in the radial and vertical directions. The emerging instability in a stratified plasma leads to an increase in the radial and vertical velocities of flows according to the law of the hyperbolic sine. The characteristic growth time depends on the value of the imaginary part of the Brunt–Väisälä frequency. The formation of jets with finite velocity components increasing with time is analyzed. The radial structure of the azimuthal components is determined by the structure of the initial perturbation and can vary with altitude. Along with studying the dynamics of the velocity field, the change in the vertical magnetic field, as well as the dynamics and structure of the emerging toroidal electric current, is investigated.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

This manuscript has no associated data or the data will not be deposited.

References

  1. S Chandrasekhar Astrophys. J. 124 232 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  2. R D Blandford and D G Payne Mon. Not. R. Astron. Soc. 199 883 (1982)

    Article  ADS  Google Scholar 

  3. R V E Lovelace, C Mehanian, C M Mobarry, M E Sulkanen Astrophys. J. Suppl. Ser. 62 1 (1986)

    Article  ADS  Google Scholar 

  4. A Ferrari Ann. Rev. Astron. Astrophys 36 539 (1998)

    Article  ADS  Google Scholar 

  5. H L Marshall, B P Miller, D S Davis, E S Perlman, M Wise, C R Canizares and D E Harris Astrophys. J. 564 683 (2002)

    Article  ADS  Google Scholar 

  6. E Scullion, M D Popescu, D Banerjee, J G Doyle and R Erdélyi Astrophys. J. 704 1385 (2009)

    Article  ADS  Google Scholar 

  7. S Wedemeyer-Böhm, E Scullion, O Steiner, V Rouppe, J de La Cruz Rodriguez, V Fedun and R Erdély Nature 486 505 (2012)

    Article  ADS  Google Scholar 

  8. N E Raouafi et al Space Sci Rev. 201 1 (2016)

    Article  ADS  Google Scholar 

  9. G M Erickson and R A Wolf Geophys. Res. Lett. 7 897 (1980)

    Article  ADS  Google Scholar 

  10. C Chen and R Wolf J. Geophys. Res. 98 21409 (1993)

    Article  ADS  Google Scholar 

  11. J E Borovsky, R C Elphic, H O Funsten, M F Thomsen J. Plas. Phys. 57 1 (1997)

    Article  ADS  Google Scholar 

  12. C X Chen and R A Wolf J. Geophys. Res. 104 A7 14613 (1999)

    Article  ADS  Google Scholar 

  13. E E Grigorenko, J-A Sauvaud, L C Palin, C Jacquey and L M Zelenyi J. Geophys. Res. Space Phys. 119 6553 (2014)

    Article  ADS  Google Scholar 

  14. M Stepanova and E E Antonova J. Geophys. Res. Space Phys. 120 3702 (2015)

    Article  ADS  Google Scholar 

  15. M Palmroth, S Raptis, J Suni, T Karlsson, L Turc, A Johlander, U Ganse, Y Pfau-Kempf, X Blanco-Cano et al Ann. Geophys. 39 2 289 (2021)

    Article  ADS  Google Scholar 

  16. R Safari and F Sohbatzadeh Indian J. Phys. 89 495 (2015)

    Article  ADS  Google Scholar 

  17. T Wolff, R Foest and H Kersten Eur. Phys. J. D 77 34 (2023)

    Article  ADS  Google Scholar 

  18. O I Bogoyavlenskij Phys. Lett. A 276 257 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  19. O G Onishchenko, O A Pokhotelov, W Horton and V Fedun Phys. Plasmas 22 122901-1–122901-5 (2015)

    Article  ADS  Google Scholar 

  20. O G Onishchenko, V Fedun, A Smolyakov, W Horton, O A Pokhotelov, G Verth Phys. Plasmas 25 054503 (2018)

    Article  ADS  Google Scholar 

  21. P M Bellan Phys. Plasmas 25 055601 (2018)

    Article  ADS  Google Scholar 

  22. M A Fedotova, D A Klimachkov and A S Petrosyan Plasma Phys. Rep. 49 303 (2023)

    Article  ADS  Google Scholar 

  23. O G Onishchenko, O A Pokhotelov, W Horton and V Fedun J. Geophys. Res.: Atmos. 121 7197 (2016)

    Article  ADS  Google Scholar 

  24. O G Onishchenko, O A Pokhotelov, N M Astaf’eva, W Horton, V N Fedun Uspekhi 63 683 (2020)

    Article  Google Scholar 

  25. B Lehnert Nucl. Fusion 11 485 (1971)

    Article  Google Scholar 

  26. S N Arteha Phys. Plasmas 3 2849 (1996)

    Article  ADS  Google Scholar 

  27. Y Zhou and P M Bellan Phys. Plasmas 30 052101 (2023)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work was supported within the framework of the State task on the topic of fundamental scientific research “Plasma” of Space Research Institute RAS (122042700118-4) and also was supported within the framework of the State task of Schmidt Institute of Physics of the Earth of RAS.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to obtaining, analysis and interpretation of the results and to preparation of this manuscript.

Corresponding author

Correspondence to S. N. Artekha.

Ethics declarations

Conflict of interest

The authors declare no conflict interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onishchenko, O.G., Artekha, S.N. & Artekha, N.S. A model of generation of a jet in stratified nonequilibrium plasma. Indian J Phys 98, 2549–2558 (2024). https://doi.org/10.1007/s12648-023-03005-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-03005-2

Keywords

Navigation