Skip to main content
Log in

Thermal Regime of the Lithosphere under the Taimyr Peninsula According to Geomagnetic Data

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

This article presents the results of a study of the thermal regime of the lithosphere under the Taimyr Peninsula and adjacent territories (70°–80° N, 80°–115° E) based on geomagnetic data. Spectral analysis of the lithospheric geomagnetic field given by the EMAG2v3 model was performed using the centroid method. The calculations we performed showed that the minimum depths of the top boundary of lithospheric magnetic sources (<2.5 km) are typical for the entire Taimyr fold belt and the considered part of the Siberian Platform, and the maximum (>6 km) for the North Kara Basin. The position of the top boundary of the magnetically active layer of the lithosphere above the bottom of the sedimentary layer under the Yenisei-Khatanga and Khatanga-Lena basins can be associated with the widespread intrusion of basalt traps into the sedimentary layer. The minimum depths of the bottom boundary of lithospheric magnetic sources (<36 km) are confined to the Eurasian Basin and neighboring territories of the Laptev Sea shelf and the islands of the Severnaya Zemlya archipelago, which indicates the greatest heating of the lithosphere under them within the region under consideration. The depth of the bottom boundary reaches maximum values (≥48 km) under the Yenisei-Khatanga and North Kara basins and the Siberian Platform, indicating the existence of the cold and, accordingly, thick lithosphere here, which is confirmed by other independent geophysical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Afanasenkov, A.P., Nikishin, A.M., Unger, A.V., Bordunov, S.I., Lugovaya, O.V., Chikishev, A.A., and Yakovishina, E.V., The tectonics and stages of the geological history of the Yenisei–Khatanga Basin and the conjugate Taimyr Orogen, Geotectonics, 2016, vol. 50, no. 2, pp. 161–178. https://doi.org/10.1134/S0016852116020023

    Article  Google Scholar 

  2. Artemieva, I.M., Global 1° × 1° thermal model TC1 for the continental lithosphere: Implications for lithosphere secular evolution, Tectonophysics, 2006, vol. 416, pp. 245–277. https://doi.org/10.1016/j.tecto.2005.11.022

    Article  Google Scholar 

  3. Artemieva, I.M., The continental lithosphere: Reconciling thermal, seismic, and petrologic data, Lithos, 2009, vol. 109, pp. 23–46. https://doi.org/10.1016/j.lithos.2008.09.015

    Article  Google Scholar 

  4. Bouligand, C., Glen, J.M.G., and Blakely, J., Mapping Curie temperature depth in the western United States with a fractal model for crustal magnetization, J. Geophys. Res., 2009, vol. 114, p. B11104. https://doi.org/10.1029/2009JB006494

    Article  Google Scholar 

  5. Cammarano, F. and Guerri, M., Global thermal models of the lithosphere, Geophys. J. Int., 2017, vol. 210, pp. 56–72. https://doi.org/10.1093/gji/ggx144

    Article  Google Scholar 

  6. Carillo-de la Cruz, J.L., Prol-Ledesma, R.M., and Gabriel, G., Geostatistical mapping of the depth to the bottom of magnetic sources and heat flow estimations in Mexico, Geothermics, 2021, vol. 97, p. 102225. https://doi.org/10.1016/j.geothermics.2021.102225

    Article  Google Scholar 

  7. Cherepanova, Y., Artemieva, I.M., Thybo, H., and Chemia, Z., Crustal structure of the Siberian Craton and the West Siberian Basin: an appraisal of existing data, Tectonophysics, 2013, vol. 609, pp. 154–183. https://doi.org/10.1016/j.tecto.2013.05.004

    Article  Google Scholar 

  8. Correa, R.T., Vidotti, R.M., Guedes, V.J.C.B., and Scandolara, J.E., Mapping the thermal structure of the Amazon Craton to constrain the tectonic domains, J. Geophys. Res.: Solid Earth, 2022, vol. 127, no. 1, e2021JB023025. https://doi.org/10.1029/2021JB023025

  9. Didas, M.M., Armadillo, E., Hersis, G.P., Cumming, W., and Rizello, D., Regional thermal anomalies derived from magnetic spectral analysis and 3D gravity inversion: Implications for potential geothermal sites in Tanzania, Geothermics, 2022, vol. 103, p. 102431. https://doi.org/10.1016/j.geothermics.2022.102431

    Article  Google Scholar 

  10. Drachev, S.S., Malyshev, N.A., and Nikishin, A.M., Tectonic history and petroleum geology of the Russian Arctic shelves: An overview, in Petroleum Geology: From Mature Basins to New Frontiers, Proc. 7th Petroleum Geology Conference, London: Geological Society, 2010, pp. 591–619. https://doi.org/10.1144/0070591

  11. Filippova, A.I. and Filippov, S.V., Depths to lithospheric magnetic sources and lithospheric thermal regime under the East Siberian Sea, Izv., Phys. Solid Earth, 2022a, vol. 58, no. 4, pp. 507–519. https://doi.org/10.1134/S1069351322040036

    Article  Google Scholar 

  12. Filippova, A.I. and Filippov, S.V., The depths to the lithospheric magnetic sources along the Kovdor–GSZ-76 profile (Baltic Shield–Barents Sea), Geomagn. Aeron. (Engl. Transl.), 2022b, vol. 62, no. 6, pp. 767–778. https://doi.org/10.1134/S0016793222060044

  13. Filippova, A.I., Golubev, V.A., and Filippov, S.V., Curie point depth and thermal state of the lithosphere beneath the northeastern flank of the Baikal rift zone and adjacent areas, Surv. Geophys., 2021, vol. 42, no. 5, pp. 1143–1170. https://doi.org/10.1007/s10712-021-09651-7

    Article  Google Scholar 

  14. Fuchs, S., Norden, B., Artemieva, I., et al., The global heat flow data-base: Release, GFZ Data Services, 2021a. https://doi.org/10.5880/fidgeo.2021.014

  15. Fuchs, S., Beardsmore, G., Chiozzi, P., et al., A new database structure for the IHFC global heat flow database, Int. J. Terr. Heat Flow Appl. Geotherm., 2021b, vol. 4, no. 1, pp. 1–14. https://doi.org/10.31214/ijthfa.v4i1.62

    Article  Google Scholar 

  16. Gaina, C., Werner, S.C., Saltus, R., et al., Circum-Arctic mapping project: New magnetic and gravity anomaly maps of the Arctic, Geol. Soc. London Mem., 2011, vol. 35, pp. 39–48. https://doi.org/10.1144/M35.3

    Article  Google Scholar 

  17. Gard, M. and Hasterok, D., A global curie depth model utilizing the equivalent source magnetic dipole method, Phys. Earth Planet. Inter., 2021, vol. 313, p. 106672. https://doi.org/10.1016/j.pepi.2021.106672

    Article  Google Scholar 

  18. Gaudreau, É., Audet, P., and Schneider, D.A., Mapping Curie depth across western Canada from a wavelet analysis of magnetic anomaly data, J. Geophys. Res.: Solid Earth, 2019, vol. 124, pp. 4365–4385. https://doi.org/10.1029/2018JB016726

    Article  Google Scholar 

  19. Goes, S., Hasterok, D., Schutt, D.K., and Klöcking, M., Continental lithospheric temperatures: A review, Phys. Earth Planet. Inter., 2020, vol. 306, p. 106509. https://doi.org/10.1016/j.pepi.2020.106509

    Article  Google Scholar 

  20. Gramberg, I.S., Verba, V.V., Verba, M.L., and Kos’ko, M.K., Sedimentary cover thickness map: Sedimentary basins in the Arctic, Polarforschung, 1999, vol. 69, pp. 243–249.

    Google Scholar 

  21. Hojat, A., Maule, C.F., and Singh, H.K., Reconnaissance exploration of potential geothermal sites in Kerman province, using Curie depth calculations, J. Earth Space Phys., 2016, vol. 41, no. 4, pp. 95–104. https://doi.org/10.22059/JESPHYS.2015.57226

    Article  Google Scholar 

  22. Hussein, M., Mickus, K., and Serpa, L.F., Curie point depth estimates from aeromagnetic data from Death Valley and surrounding regions, California, Pure Appl. Geophys., 2013, vol. 170, pp. 617–632. https://doi.org/10.1007/s00024-012-0557-6

    Article  Google Scholar 

  23. Ismail-Zadeh, A., Honda, S., and Tsepelev, I., Linking mantle upwelling with the lithosphere descent and the Japan Sea evolution: A hypothesis, Sci. Rep., 2013, vol. 3, p. 1137. https://doi.org/10.1038/srep01137

    Article  Google Scholar 

  24. Langel, R.A. and Hinze, W.J., The Magnetic Field of the Earth’s Lithosphere, Cambridge, UK: Cambridge University Press, 1998.

    Book  Google Scholar 

  25. Laske, G., Masters, G., Ma, Z., and Pasyanos, M., Update on CRUST1.0: A 1-degree global model of Earth’s crust, in Abstracts of the European Geoscience Union General Assembly, Vienna, Austria, 2013, EGU2013-2658.

  26. Lebedev, S., Schaeffer, A.J., Fullea, J., and Pease, V., Seismic tomography of the Arctic region: Inferences for the thermal structure and evolution of the lithosphere, in Circum-Arctic Lithosphere Evolution, London, Geological Society, 2017, vol. 460, pp. 419–440. https://doi.org/10.1144/SP460.10

  27. Lesur, V., Hamoudi, M., Choi, Y., Dyment, J., and Thebault, E., Building the second version of the World Digital Magnetic Anomaly Map (WDMAM), Earth Planets Space, 2016, vol. 68, no. 1, pp. 1–13. https://doi.org/10.1186/s40623-016-0404-6

    Article  Google Scholar 

  28. Levshin, A.L., Ritzwoller, M.H., Barmin, M.P., Villasenor, A., and Padgett, C.A., New constraints on the Arctic crust and uppermost mantle: Surface wave group velocities, Pn, and Sn, Phys. Earth Planet. Inter., 2001, vol. 123, pp. 185–204. https://doi.org/10.1016/S0031-9201(00)00209-0

    Article  Google Scholar 

  29. Li, C.-F., Lu, Y., and Wang, J., A global reference model of Curie-point depths based on EMAG2, Sci. Rep., 2017, vol. 7, p. 45129. https://doi.org/10.1038/srep45129

    Article  Google Scholar 

  30. Lu, Y., Li, C.-F., Wang, J., and Wan, X., Arctic geothermal structures inferred from Curie-point depths and their geodynamic implications, Tectonophysics, 2022, vol. 822, p. 229158. https://doi.org/10.1016/j.tecto.2021.229158

    Article  Google Scholar 

  31. Maule, C.F., Purucker, M.E., Olsen, N., and Mosegaard, K., Heat flux anomalies in Antarctica revealed by satellite magnetic data, Science, 2005, vol. 309, pp. 464–467. https://doi.org/10.1126/science.1106888

    Article  Google Scholar 

  32. Maus, S., Barckhausen, U., Berkenbosch, H., et al., EMAG2: A 2-arc-minute resolution earth magnetic anomaly grid compiled from satellite, airborne and marine magnetic measurements, Geochem. Geophys. Geosyst., 2009, vol. 10, p. Q08005. https://doi.org/10.1029/2009GC002471

    Article  Google Scholar 

  33. Meyer, B., Chulliat, A., and Saltus, R., Derivation and error analysis of the Earth magnetic anomaly grid at 2 arc min resolution version 3 (EMAG2v3), Geochem. Geophys. Geosyst., 2017, vol. 18, pp. 4522–4537. https://doi.org/10.1002/2017GC007280

    Article  Google Scholar 

  34. Núñez Demarco, P, Prezzi, C., and Sánchez Bettucci, L., Review of Curie point depth determination through different spectral methods applied to magnetic data, Geophys. J. Int., 2021, vol. 224, no. 1, pp. 17–39. https://doi.org/10.1093/gji/ggaa361

    Article  Google Scholar 

  35. Okubo, Y. and Matsunaga, T., Curie point depth in northeast Japan and its correlation with regional thermal structure and seismicity, J. Geophys. Res., 1994, vol. 99, no. B11, pp. 22363–22371.

    Article  Google Scholar 

  36. Okubo, Y., Graf, R.J., Hansen, R.O., Ogawa, K., and Tsu, H., Curie point depths of the island of Kyushu and surrounding areas, Japan, Geophysics, 1985, vol. 50, pp. 481–494.

    Article  Google Scholar 

  37. Oliveira, J.T.C., Barbosa, J.A., de Castro, D.L., de Barros Correia, P., Magalhães, J.R.C., Filho, O.J.C., and Buarque, B.V., Precambrian tectonic inheritance control of the NE Brazilian continental margin revealed by Curie point depth estimation, Ann. Geophys., 2021, vol. 64, no. 2, p. GT213. https://doi.org/10.4401/ag-8424

    Article  Google Scholar 

  38. Olsen, N., Ravat, D., Finlay, C.C., and Kother, L.K., LCS-1: A high-resolution global model of the lithospheric magnetic field derived from CHAMP and swarm satellite observations, Geophys. J. Int., 2017, vol. 211, pp. 1461–1477. https://doi.org/10.1093/gji/ggx381

    Article  Google Scholar 

  39. Pease, V. and Persson, S., Neoproterozoic island arc magmatism of northern Taimyr, in Proc. Fourth International Conference on Arctic Margins, Anchorage, 2006, pp. 31–49.

  40. Pirttijärvi, M., 2D Fourier domain operations, FOURPOT program, 2015. https://wiki.oulu.fi/x/0oU7AQ.

  41. Prasad, K.N.D., Bansal, A.R., Prakash, Om., and Singh, A.P., Magneto-thermometric modeling of Central India: Implications for the thermal lithosphere, J. Appl. Geophys., 2022, vol. 196, p. 104508. https://doi.org/10.1016/j.jappgeo.2021.104508

    Article  Google Scholar 

  42. Priestley, K., McKenzie, D., and Ho, T., A lithosphere–asthenosphere boundary: A global model derived from multimode surface-wave tomography and petrology, in Lithospheric Discontinuities, Yuan, H. and Romanowicz, B., Eds., AGU, 2019, ch. 6, pp. 111–119.

    Google Scholar 

  43. Ravat, D., Pignatelli, A., Nicolosi, I., and Chiappini, M., A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data, Geophys. J. Int., 2007, vol. 169, pp. 421–434. https://doi.org/10.1111/j.1365-246X.2007.03305.x

    Article  Google Scholar 

  44. Ritzwoller, M.H. and Levshin, A.L., Eurasian surface wave tomography: Group velocities, J. Geophys. Res., 1998, vol. 103, no. B3, pp. 4839–4878. https://doi.org/10.1029/97JB02622

    Article  Google Scholar 

  45. Salazar, J.M., Vargas, C.A., and Leon, H., Curie point depth in the SW Caribbean using the radially averaged spectra of magnetic anomalies, Tectonophysics, 2017, vol. 694, pp. 400–413. https://doi.org/10.1016/j.tecto.2016.11.023

    Article  Google Scholar 

  46. Salem, A., Green, C., Ravat, D., Singh, K.H., East, P., Fairhead, J.D., Morgen, S., and Biegert, E., Depth to Curie temperature across the central Red Sea from magnetic data using the de-fractal method, Tectonophysics, 2014, vol. 624–625, pp. 75–86. https://doi.org/10.1016/j.tecto.2014.04.027

    Article  Google Scholar 

  47. Samygin, S.G., Features of the structure and geodynamic evolution of Taimyr in the Neoproterozoic, Litosfera, 2018, vol. 18, no. 1, pp. 5–19. https://doi.org/10.24930/1681-9004-2018-18-1-005-019

    Article  Google Scholar 

  48. Seredkina, A.I., Surface wave tomography of the Arctic from Rayleigh and Love wave group velocity dispersion data, Izv., Phys. Solid Earth, 2019a, vol. 55, no. 3, pp. 439–450. https://doi.org/10.1134/S106935131903008X

    Article  Google Scholar 

  49. Seredkina, A., S-wave velocity structure of the upper mantle beneath the arctic region from Rayleigh wave dispersion data, Phys. Earth Planet. Inter., 2019b, vol. 290, pp. 76–86. https://doi.org/10.1016/j.pepi.2019.03.007

    Article  Google Scholar 

  50. Seredkina, A.I. and Filippov, S.V., The depth to magnetic sources in the Arctic and its relationship with some parameters of the lithosphere, Russ. Geol. Geophys., 2021, vol. 62, no. 7, pp. 735–745. https://doi.org/10.2113/RGG20194106

    Article  Google Scholar 

  51. Sobh, M., Gerhards, C., Fadel, I., and Götze, H.-J., Mapping the thermal structure of Southern Africa from curie depth estimates based on wavelet analysis of magnetic data with uncertainties, Geochem. Geophys. Geosyst., 2021, vol. 22, no. 1, p. 2021GC010041. https://doi.org/10.1029/2021GC010041

  52. Sorokhtin, N.O., Lobkovskii, L.I., Nikiforov, S.I., and Kozlov, N.E., Geodynamic evolution of oil-and-gas bearing basins in the Kara–Barents shelf of Russia, Arkt: Ekol. Ekon., 2015, vol. 18, no. 2, pp. 14–25.

    Google Scholar 

  53. Sun, S., Du, J., Zhi, J., Chen, C., and Xu, H., A constrained approach by Curie point depth estimation for the 3-D inversion of regional lithospheric magnetic anomaly data in spherical coordinates and its application to the Northern Xinjiang, China, J. Geophys. Res.: Solid Earth, 2022, vol. 127, no. 8, e2021JB023149. https://doi.org/10.1029/2021JB023149

  54. Szwillus, W., Baykiev, E., Dilixiati, Y., and Ebbing, J., Linearized Bayesian estimation of magnetization and depth to magnetic bottom from satellite data, Geophys. J. Int., 2022, vol. 230, no. 3, pp. 1508–1533. https://doi.org/10.1093/gji/ggac133

    Article  Google Scholar 

  55. Tanaka, A., Global centroid distribution of magnetized layer from world digital magnetic anomaly map, Tectonics, 2017, vol. 36, pp. 3248–3253. https://doi.org/10.1002/2017TC004770

    Article  Google Scholar 

  56. Tanaka, A. and Ishikawa, Y., Crustal thermal regime inferred from magnetic anomaly data and its relationship to seismogenic layer thickness: The Japanese Islands case study, Phys. Earth Planet. Inter., 2005, vol. 152, pp. 257–266. https://doi.org/10.1016/j.pepi.2005.04.011

    Article  Google Scholar 

  57. Tanaka, A., Okubo, Y., and Matsubayashi, O., Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia, Tectonophysics, 1999, vol. 306, pp. 461–470.

    Article  Google Scholar 

  58. Vernikovskii, V.A., Geodinamicheskaya evolyutsiya Taimyrskoi skladchatoi oblasti (Geodynamic Evolution of the Taimyr Folded Region), Novosibirsk: SO RAN, 1996.

  59. Wen, L., Kang, G., Bai, C., and Gao, G., Studies on the relationships of the Curie surface with heat flow and crustal structures in Yunnan Province, China, and its adjacent areas, Earth Planets Space, 2019, vol. 71, p. 85. https://doi.org/10.1186/s40623-019-1063-1

    Article  Google Scholar 

  60. Yanovskii, B.M., Zemnoi magnetism (Terrestrial Magnetism), Leningrad: Leningradskii universitet, 1978.

  61. Zonenshain, L.P., Kuz’min, M.I., and Natapov, L.M., Tektonika litosfernykh plit territorii SSSR (Tectonics of Lithospheric Plates of the USSR Territory), Moscow: Nedra, 1990, vol. 2.

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 21-77-10 070.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Filippova or S. V. Filippov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippova, A.I., Filippov, S.V. Thermal Regime of the Lithosphere under the Taimyr Peninsula According to Geomagnetic Data. Geomagn. Aeron. 63, 349–359 (2023). https://doi.org/10.1134/S0016793223600054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793223600054

Keywords:

Navigation