Skip to main content
Log in

Magnetic Flux Ropes on the Sun: Electric Currents and Flare Activity

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The main property of magnetic flux ropes in plasma is the shielding of electric currents. The second important property of force-free ropes is the need for external pressure, which prevents the loop from lateral expansion. With allowance for these factors, we calculated a force-free filament structure, in which the magnetic field on the axis significantly exceeds the external one. When a magnetic loop emerges into the rarefied solar atmosphere, the external pressure continuously drops, and at some limiting value, the longitudinal magnetic field of the loop turns to zero at the surface of the change of a sign of electric currents. This leads to a break in the azimuthal current on it and serves as a trigger for the excitation of plasma instability, the appearance of abnormal resistance with subsequent flare energy release and the generation of super-dreicer electric fields in elements of the thin magnetic structure with a diameter of ~100 km. Such fields can accelerate charged particles to hundreds of MeV on a path of several thousand km. The quasi-periodic mode of flare energy release in such a magnetic flux rope is discussed and a mechanism for ejection of accelerated particles from a loop magnetic trap upon entering the heliosphere is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. Artsimovich, L.A. and Sagdeev, R.Z., Fizika plazmy dlya fizikov (Plasma Physics for Physicists), Moscow: Atomizdat, 1979.

  2. Avrett, E.H. and Loeser, R., Models of the solar chromosphere and transition region from Sumer and HRTS observations, Astrophys. J., Suppl. Ser., 2008, vol. 175, id 229.

  3. Carmichael, H., A process for flares, in The Physics of Solar Flares: Proc. of AAS-NASA Symp. 1963, NASA, 1964, pp. 451–456.

  4. Chen, B., Yu. S., Reeves, K., and Gary, D., Microwave spectral imaging of an erupting magnetic flux rope: Implications for the standard solar flare model in three dimensions, Astrophys. J. Lett., 2020, vol. 895, p. L50.

    Article  Google Scholar 

  5. Fleishman, G.D., Gary, D., Chen, B., et al., Decay of the coronal magnetic field can release sufficient energy to power a solar flare, Science, 2020, vol. 367, pp. 278–280.

    Article  Google Scholar 

  6. Fleishman, G.D., Nita, G.M., Gelu, M., and Chen, B., Solar flare accelerates nearly all electrons in a large coronal volume, Nature, 2022, vol. 606, pp. 674–677.

    Article  Google Scholar 

  7. Gold, T. and Hoyle, F., On the origin of solar flares, Mon. Not. R. Astron. Soc., 1960, vol. 120, pp. 89–105.

    Article  Google Scholar 

  8. Hirayama, T., Theoretical model of flares and prominences. I. Evaporation flare model, Sol. Phys., 1974, vol. 343, pp. 323–338.

    Article  Google Scholar 

  9. Huang, G., Melnikov, V., Ji, H., and Ning, Z., Solar Flare Loops: Observations and Interpretations, Beijing: Springer Science, 2016.

    Google Scholar 

  10. Kadomtsev, B.B., Reconnection of field lines in magnetohydrodynamics, in Nelineinye volny (Nonlinear Waves), Gaponov-Grekhov, A.V., Moscow: Nauka, 1979, pp. 131–163.

  11. Kopp, R.A. and Pneuman, G.W., Magnetic reconnection in the corona and the loop prominence phenomenon, Sol. Phys., 1976, vol. 50, pp. 85–98.

    Article  Google Scholar 

  12. Krucker, S., Battaglia, M., Cargill, P.J., et al., Hard X-ray emission from the solar corona, Astron. Astrophys. Rev., 2008, vol. 16, pp. 155–208. https://doi.org/10.1007/s00159-008-0014-9

    Article  Google Scholar 

  13. Landau, L.D. and Lifshits, E.M., Elektrodinamika sploshnykh sred (Electrodynamics of Continuous Media), Moscow: Nauka, 1982.

  14. Low, B.C., Nonisothermal magnetostatic equilibria in a uniform gravity field, Astrophys. J., 1975, vol. 197, p. 251.

    Article  Google Scholar 

  15. Lozitsky, V.G., Spectral manifestations of extremely strong magnetic fields in the sunspot umbra, Adv. Space Res., 2017, vol. 59, no. 5, pp. 1416–1424.

    Article  Google Scholar 

  16. Lozitsky, V.G., Yurchyshyn, V., Ahn, K., and Wang, H., Observations of extremely strong magnetic fields in active region NOAA 12673 using GST magnetic field measurement, Astrophys. J., 2022, vol. 928, no. 1, p. 41L.

    Article  Google Scholar 

  17. Lundquist, S., Magneto-hydrostatic fields, Ark. Fys., 1950, vol. 2, pp. 361–365.

    Google Scholar 

  18. Lundquist, S., On the stability of magneto-hydrostatic fields, Phys. Rev., 1951, vol. 83, no. 2, pp. 307–311.

    Article  Google Scholar 

  19. Lüst, R. and Schlüter, A.Z., Kraftfreie Magnetfelder, Astrophys. J., 1954, vol. 34, pp. 263–282.

    Google Scholar 

  20. Parker, E.N., Cosmical Magnetic Fields, Oxford: Clarendon Press, 1979.

    Google Scholar 

  21. Parker, E.N., Conversations on Electric and Magnetic Field in the Cosmos, Princeton, N.J.: Princeton Univ. Press, 2007.

    Book  Google Scholar 

  22. Parker, E.N., Solar magnetism: The state of our knowledge and ignorance, Space Sci. Rev., 2008, vol. 144, nos. 1–4, pp. 15–24.

    Article  Google Scholar 

  23. Piddington, J.H., Basic mechanisms of solar activity, in Proc. IAU Symp. no. 71, Prague, Czechoslovakia, 25–29 August 1975, Bumba, V. and Kleczek, J., Eds., Boston, 1976.

  24. Priest, E.R., Solar Magnetohydrodynamics, London: Reidel, 1982; Moscow: Mir, 1985.

  25. Priest, E.R., Magnetohydrodynamics of the Sun, Cambridge, UK: Reidel, 2014.

    Book  Google Scholar 

  26. Priest, E.R. and Forbes, T., Magnetic Reconnection, Cambridge Univ. Press, 2000; Moscow: Fizmatlit, 2005.

  27. Schatzman, E., Model of force free fields, in Stellar and Solar Magnetic Fields: Proceedings of the IAU Symposium no. 22, Lüst, R., Ed., Amsterdam: North-Holland, 1965.

  28. Schlüter, A. and Temesvary, St., Electromagnetic phenomena in cosmic physics, in IAU Symposium no. 6, Lehnart, B., Ed., Cambridge Univ. Press, 1958.

  29. Shafranov, V.D., Plasma equilibrium in a magnetic field, in Voprosy teorii plazmy (Problems in Plasma Theory), Moscow: Atomizdat, 1962, vol. 2, pp. 92–132.

  30. Shibata, K., Masuda, S., Shimojo, M., et al., Hot-plasma ejections associated with compact-loop solar flares, Astrophys. J., 1995, vol. 451, pp. L83–L85.

    Article  Google Scholar 

  31. Solov’ev, A.A., The structure of solar filaments, Astron. Rep., 2010, vol. 54, pp. 86–95.

    Article  Google Scholar 

  32. Solov’ev, A.A., Force free magnetic flux ropes: String confinement of super-strong magnetic fields and flare energy release, Mon. Not. R. Astron. Soc., 2022a, vol. 515, no. 4, pp. 4981–4989.

    Article  Google Scholar 

  33. Solov’ev, A.A., Toroidal magnetic chamber “tokamak” in solar atmosphere: Confinement and flare release of magnetic energy, Astron. Lett., 2022b, vol. 48, no. 3, pp. 185–193.

    Article  Google Scholar 

  34. Solov’ev, A.A. and Kirichek, E.A., Magnetohydrostatics of a vertical flux tube in the solar atmosphere: Coronal loops, a model of a ring flare filament, Astron. Lett., 2015, vol. 41, no. 5, pp. 211–224.

    Article  Google Scholar 

  35. Solov’ev, A.A. and Kirichek, E.A., Structure of solar faculae, Mon. Not. R. Astron. Soc., 2019, vol. 482, no. 4, pp. 5290–5301.

    Article  Google Scholar 

  36. Solov’ev, A.A. and Kirichek, E.A., Force free magnetic flux ropes: Inner structure and basic properties, Mon. Not. R. Astron. Soc., 2021, vol. 505, no. 3, pp. 4406–4416.

    Article  Google Scholar 

  37. Solov’ev, A.A. and Murawski, K., Does the energy-release region of the flare work as a vacuum cleaner?, Astrophys. Space Sci., 2014, vol. 350, no. 1, pp. 11–19.

    Article  Google Scholar 

  38. Solov’ev, A.A., Riechokainen, A., Smirnova, V.V., and Korolkova, O.A., Double filament as a fine structure element of flare configuration, Geomagn. Aeron. (Engl. Transl.), 2022, vol. 62, no. 8, pp. 1021–1029.

  39. Sturrock, P.A., Model of high-energy phase of solar flares, Nature, 1966, vol. 211, pp. 695–697.

    Article  Google Scholar 

  40. Verscharen, D., A step closer to the Sun’s secrets, Nature, 2019, vol. 576, no. 7786, pp. 219–220.

    Article  Google Scholar 

  41. Wang, H., Cao, W., Liu, C., et al., Witnessing magnetic twist with high-resolution observation from the 1.6-m New Solar Telescope, Nat. Commun., 2015, vol. 6, p. 7008. https://doi.org/10.1038/ncomms8008

    Article  Google Scholar 

  42. Wöltjer, L., A theorem on force-free magnetic fields, Proc. Natl. Acad. Sci. U.S.A., 1958a, vol. 44, pp. 489–491.

    Article  Google Scholar 

  43. Wöltjer, L., The stability of force-free magnetic fields, Astrophys. J., 1958b, vol. 128, pp. 384–391.

    Article  Google Scholar 

  44. Yan, X., Xue, Z., Cheng, X., et al., Triggering mechanism and material transfer of a failed solar filament eruption, Astrophys. J., 2020, vol. 889, p. 106.

    Article  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Solov’ev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by A. Ivanov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solov’ev, A.A., Kirichek, E.A. & Korolkova, O.A. Magnetic Flux Ropes on the Sun: Electric Currents and Flare Activity. Geomagn. Aeron. 63, 1120–1135 (2023). https://doi.org/10.1134/S0016793223080200

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793223080200

Navigation