Skip to main content
Log in

Manifestation of Magnetic Flux Ropes in the Structure of Solar Prominences

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The appearance of quiescent solar prominences most often resembles a wide curtain or a fence made of a vertical palisade. It is hard to imagine that such a structure can be connected or even formed by a magnetic flux rope, that is, a bundle of force lines twisted into a cylindrical helix, which sometimes clearly manifests itself in active region filaments. However, with a relatively small activation of the prominences, when the plasma composing them begins to move along the field lines, the structure of the magnetic flux rope can be discerned. An example of a quiescent prominence is shown, in which rotational motion is observed along helical trajectories outlining the flux rope. The rotation is clearly visible in the time-distance diagram, which is composed of narrow strips of images of the prominence along the trajectory of motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Amari, T., Luciani, J., Mikic, Z., and Linker, J., A twisted flux rope model for coronal mass ejections and two-ribbon flares, Astrophys. J., 2000, vol. 529, pp. L49–L52.

    Article  Google Scholar 

  2. Cargill, P.J., Coronal magnetism: Difficulties and prospects, Space Sci. Rev., 2009, vol. 144, pp. 413–421.

    Article  Google Scholar 

  3. Chae, J., The magnetic helicity sign of filament chirality, Astrophys. J. Lett., 2000, vol. 540, pp. L115–L118.

    Article  Google Scholar 

  4. Chen, J., Effects of toroidal forces in current loops embedded in a background plasma, Astrophys. J., 1989, vol. 338, pp. 453–470.

    Article  Google Scholar 

  5. Dere, K.P., Brueckner, G.E., Howard, R.A., Michels, D.J., and Delaboudiniere, J.P., LASCO and EIT observations of helical structure in coronal mass ejections, Astrophys. J., 1999, vol. 516, pp. 465–474.

    Article  Google Scholar 

  6. Filippov, B.P., Some properties of the joining of solar filaments, Astron. Rep., 2011, vol. 55, no. 6, pp. 541–550.

    Article  Google Scholar 

  7. Filippov, B.P., Morphological indictors of the chirality of solar filaments, Astron. Rep., 2017, vol. 61, no. 10, pp. 891–900.

    Article  Google Scholar 

  8. Filippov, B.P., Mass ejections from the solar atmosphere, Phys.-Usp., 2019, vol. 62, no. 9, pp. 847–864.

    Article  Google Scholar 

  9. Filippov, B., Martsenyuk, O., Srivastava, A.K., and Uddin, W., Solar magnetic flux ropes, J. Astrophys. Astron., 2015, vol. 36, no. 1, pp. 157–184.

    Article  Google Scholar 

  10. Gary, G.A., Plasma beta above a solar active region: Rethinking the paradigm, Sol. Phys., 2001, vol. 203, pp. 71–86.

    Article  Google Scholar 

  11. Gigolashvili, M.Sh., An investigation of macroscopic motions using the Ca+ lines in the prominence of 15 October 1969, Sol. Phys., 1978, vol. 60, pp. 293–298.

    Article  Google Scholar 

  12. Gosling, J.T., The role of reconnection in the formation of flux ropes in the solar wind, in Magnetic Helicity in Space and Laboratory Plasmas, Brown, M.R., Canfield, R.C., and Pevtsov, A.A., Eds., Washington, D.C.: Am. Geophys. Union, 1999, pp. 205–212.

    Google Scholar 

  13. Handy, B.N., Acton, L.W., and Kankelborg, C.C., The transition region and coronal explorer, Sol. Phys., 1999, vol. 187, pp. 229–260.

    Article  Google Scholar 

  14. Joshi, N.C., Srivastava, A.K., Filippov, B., Kayshap, P., Uddin, W., Chandra, R., Choudhary, P.D., and Dwivedi, B.N., Confined partial filament eruption and its reformation within a stable magnetic flux rope, Astrophys. J., 2014, vol. 787, no. 11.

  15. Kliem, B. and Török, T., Torus instability, Phys. Rev. Lett., 2006, vol. 96, no. 25, 255002.

    Article  Google Scholar 

  16. Kulikova, G.N., Molodenskii, M.M., Starkova, L.I., and Filippov, B.P., Currents in the active region HR16927 according to Hα data, Soln. Dannye, 1986, no. 10, pp. 60–65.

  17. Lemen, J.R., Title, A.M., Akin, D.J., et al., The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO), Sol. Phys., 2012, vol. 275, pp. 17–40.

    Article  Google Scholar 

  18. Leroy, J.-L., Observation of prominence magnetic fields, in Dynamics and Structure of Quiescent Solar Prominences: Proceedings of the Workshop, Palma de Mallorca, Spain, 1987, Priest, E.R., Ed., Dordrecht: Kluwer, 1989, pp. 77–113.

  19. Li, X., Morgan, H., Leonard, D., and Jeska, L., A solar tornado observed by AIA/SDO: Rotational flow and evolution of magnetic helicity in a prominence and cavity, Astrophys. J., 2012, vol. 752, L22.

    Article  Google Scholar 

  20. Liggett, M. and Zirin, H., Rotation in prominences, Sol. Phys., 1984, vol. 91, pp. 259–267.

    Article  Google Scholar 

  21. Lin, J., Forbes, T.G., Isenberg, P.A., and Demoulin, P., The effect of curvature on flux-rope models of coronal mass ejections, Astrophys. J., 1998, vol. 504, pp. 1006–1019.

    Article  Google Scholar 

  22. Lin, H., Penn, M.J., and Tomczyk, S., A new precise measurement of the coronal magnetic field strength, Astrophys. J., 2000, vol. 541, pp. L83–L86.

    Article  Google Scholar 

  23. Lin, Y., Engvold, O., Rouppe van der Voort, L., Wiik, J.E., and Berger, T.E., Thin threads of solar filaments, Sol. Phys., 2005, vol. 226, pp. 239–254.

    Article  Google Scholar 

  24. Lin, Y., Martin, S.F., and Engvold, O., Filament substructures and their interrelation, in: Subsurface and Atmospheric Influences on Solar Activity, Howe, R., Komm, R.W., Balasubramaniam, K.S., and Petrie, G.J.D., Eds., San Francisco: Astron. Soc. Pacific, 2008, pp. 235–242.

    Google Scholar 

  25. Low, B.C., Coronal mass ejections, magnetic flux ropes, and solar magnetism, J. Geophys. Res., 2001, vol. 106, pp. 25141–25164.

    Article  Google Scholar 

  26. Lynch, B.J., Antiochos, S.K., DeVore, C.R., Luhmann, J.G., and Zurbuchen, T.H., Topological evolution of a fast magnetic breakout CME in three dimensions, Astrophys. J., 2008, vol. 683, no. 2, pp. 1192–1206.

    Article  Google Scholar 

  27. Martin, S.F. and Echols, C.R., An observational and conceptual model of the magnetic field of a filament, in Solar Surface Magnetism, Rutten, R.J. and Schrijver, C.J., Eds., Dordrecht: Kluwer, 1994, pp. 339–346.

    Google Scholar 

  28. Martin, S.F., Lin, Y., and Engvold, O., A method of resolving the 180-degree ambiguity by employing the chirality of solar features, Sol. Phys., 2008, vol. 250, pp. 31–51.

    Article  Google Scholar 

  29. Orozco Suárez, D., Asensio Ramos, A., and Trujillo Bueno, J., Evidence for rotational motions in the feet of a quiescent solar prominence, Astrophys. J. Lett., 2012, vol. 761, L25.

    Article  Google Scholar 

  30. Panasenco, O., Martin, S.F., and Velli, M., Apparent solar tornado-like prominences, Sol. Phys., 2014, vol. 289, pp. 603–622.

    Article  Google Scholar 

  31. Panesar, N.K., Innes, D.E., Tiwari, S.K., and Low, B.C., A solar tornado triggered by flares?, Astron. Astrophys., 2013, vol. 549, A105. Pettit, E., The forms and motions of the solar prominences, Publ. Yerkes Obs., 1025, vol. 3, pp. 205–240.

  32. Pevtsov, A.A., Balasubramaniam, K.S., and Rogers, J.W., Chirality of chromospheric filaments, Astrophys. J., 2003, vol. 595, pp. 500–505.

    Article  Google Scholar 

  33. Rompolt, B., Spectral features to be expected from rotational and expansional motions in fine solar structures, Sol. Phys., 1975, vol. 41, pp. 329–348.

    Article  Google Scholar 

  34. Rompolt, B., Small scale structure and dynamics of prominences, Hvar Obs. Bull., 1990, vol. 14, pp. 37–102.

    Google Scholar 

  35. Su, Y., Wang, T., Veronig, A., Temmer, M., and Gan, W., Solar magnetized “tornadoes:” Relation to filaments, Astrophys. J. Lett., 2012, vol. 756, L41.

    Article  Google Scholar 

  36. Titov, V.S. and Demoulin, P., Basic topology of twisted magnetic configurations in solar flares, Astron. Astrophys., 1999, vol. 351, pp. 707–720.

    Google Scholar 

  37. Vršnak, B., Ruždjak, V., and Rompolt, B., Stability of prominences exposing helical-like patterns, Sol. Phys., 1991, vol. 136, pp. 151–167.

    Article  Google Scholar 

  38. Vršnak, B., Ruždjak, V., Rompolt, B., Rosa, D., and Zlobec, P., Kinematics and evolution of twist in the eruptive prominence of August 18, 1980, Sol. Phys., 1993, vol. 146, pp. 147–162.

    Article  Google Scholar 

  39. Wang, H., Cao, W., Liu, C., Xu, Y., Liu, R., Zeng, Z., Chae, J., and Ji, H., Witnessing magnetic twist with high-resolution observation from the 1.6-m New Solar Telescope, Nat. Commun., 2015, vol. 6, no. 7008.

  40. Wedemeyer-Bohm, S., Scullion, E., Rouppe van der Voort, L., Bosnjak, A., and Antolin, P., Are giant tornadoes the legs of solar prominences?, Astrophys. J., 2013, vol. 774, p. 123.

    Article  Google Scholar 

  41. Wiegelmann, T., Thalmann, J.K., and Solanki, S.K., The magnetic field in the solar atmosphere, Astron. Astrophys. Rev., 2014, vol. 22, p. 78.

    Article  Google Scholar 

  42. Yang, S., Zhang, J., Liu, Z., and Xiang, Y., New vacuum solar telescope observations of a flux rope tracked by a filament activation, Astrophys. J., 2014, vol. 784, L36.

    Article  Google Scholar 

  43. Yang, Z., Bethge, C., Tian, H., et al., Global maps of the magnetic field in the solar corona, Science, 2020, vol. 369, no. 6504, pp. 694–697.

    Article  Google Scholar 

  44. Zuccarello, F.P., Meliani, Z., and Poedts, S., Numerical modeling of the initiation of coronal mass ejections in active region NOAA 9415, Astrophys. J., 2012, vol. 758, p. 117.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to the staff of the Big Bear Solar Observatory, the scientific groups of the SOHO, TRACE, SDO projects, and the amateur astronomer Alexander Golitschek, Darmstadt, Germany, for the opportunity to access the observational materials. SOHO is a joint project between ESA and NASA. SDO is NASA’s Living With a Star mission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Filippov.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippov, B.P. Manifestation of Magnetic Flux Ropes in the Structure of Solar Prominences. Geomagn. Aeron. 63, 146–152 (2023). https://doi.org/10.1134/S0016793222600771

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793222600771

Navigation