Skip to main content
Log in

Effect of VLF Electromagnetic Radiations Associated with Some Moderate Shallow Earthquakes (4.9 ≤ M ≤ 6, Depth ≤ 20 Km) on the Atmosphere as Observed in the Terrestrial Antenna at Mathura

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Monitoring of the vertical component of VLF electric fields is in progress at Chaumuhan, Mathura observatory (Lat. 27.5° N, Long. 77.68° E) at the frequency 3.012 kHz since 24 March 2011 employing the terrestrial antenna for studying the effect of electromagnetic radiations associated with earthquakes on the atmosphere. The bulk of the data collected for 8 months from February 2016 to October 2016 (except April 2016) have been analyzed in the light of shallow moderate earthquakes (4.9 ≤ M ≤ 6, depth ≤ 20 km) that have occurred in India and around within a radius of 1500 km assuming Mathura as a center. The VLF data obtained for each day is averaged out and its daily variation is compared with the monthly average for the group of eight months considered in the present analysis for identifying the disturbed days. It is found that daily variation exceeds the monthly mean, 1–23 days before the onset of the earthquakes in India and around within the radius of 1500 km. The influence of magnetic storms, lightning, local building noises, and seismic activities are studied on these VLF amplitude enhancements and it is found that they are not related to these spurious sources but are associated with the moderate seismic events that have occurred during the period of observations. Further, the generation and transmission mechanisms of these signals are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Alperovich, L. and Fedorov, E., Perturbation of atmospheric conductivity as a cause of the seismoionospheric interaction, Phys. Chem. Earth., 1998, vol. 23, nos. 9–10, pp. 945–947. https://doi.org/10.1016/s0079-1946(98)00124-4

    Article  Google Scholar 

  2. Bruce, C.E.R. and Golde, R.H., The Lightning Discharge, London: JIEE, 1941, vol. 88, pp. 487–505.

    Google Scholar 

  3. Cervone, G., Maekawa, S., Singh, R.P., Hayakawa, M., Kafatos, M., and Shvets, A., Surface latent heat flux and nighttime LF anomalies prior to the Mw = 8.3 Tokachi-Oki earthquake, Nat. Hazards Earth Syst. Sci., 2006, vol. 6, no. 1, pp. 109‒114.

    Article  Google Scholar 

  4. Choudhury, A., De, B.K., Guha, A., and Roy, R., Long-duration geomagnetic storm effects on the D region of the ionosphere: Some case studies using VLF signal, J. Geophys. Res: Space Phys., 2015, vol. 120, no. 1, pp. 778–787.

    Article  Google Scholar 

  5. Conti, L., Picozza, P., and Sotgiu, A., A Critical review of ground-based observations of Earthquake precursors, Front. Earth Sci., 2021, vol. 9, pp. 1–30.

    Article  Google Scholar 

  6. Cress, G.O., Brady, B.T., and Rowell, G.A., Sources of electromagnetic radiation from fracture of rock samples in the laboratory, Geophys. Res. Lett., 1987, vol. 14, no. 4, pp. 331–334. https://doi.org/10.1029/GL014i004p00331.

    Article  Google Scholar 

  7. Davies, K. and Baker, D.M., Ionospheric effects observed around the time of the Alaska earthquake of March 28, 1964, J. Geophys. Res., 1965, vol. 70, no. 9, pp. 2251–2253.

    Article  Google Scholar 

  8. Enomoto, Y. and Hashimoto, H., Anomalous electric signals detected before recent earthquakes in Japan near Tsukuba, in Electromagnetic Phenomena Related to Earthquake Prediction, Hayakawa, M. and Fujinawa, Y., Eds., Tokyo: Terra Sci., 1994, pp. 261–269.

    Google Scholar 

  9. Frid, V., Rabinovitch, A., and Bahat, D., Fracture-induced electromagnetic radiation, J. Phys. D.: Appl. Phys., 2003, vol. 36, no. 13, pp. 1620–1628.

    Article  Google Scholar 

  10. Fujinawa, Y., and Takahashi, K., Anomalous VLF subsurface electric field changes preceding to earthquakes, in Electromagnetic Phenomena Related to Earthquake Prediction, Hayakawa, M. and Fujinawa, Y., Eds., Tokyo: Terra Sci., 1994, pp. 131–147.

    Google Scholar 

  11. Fujinawa, Y., Takahashi, K., Noda, Y., Iitaka, H., and Yazaki, S., Remote detection of the electric field change induced at the seismic wavefront from the start of fault rupturing, Int. J. Geophys., 2011, vol. 2011, pp. 1–11. https://doi.org/10.1155/2011/752193

    Article  Google Scholar 

  12. Fujinawa, Y., Noda, Y., Takahashi, K., Kobayashi, M., Takamatsu, K., and Natsumeda, J., Field detection of microcracks to define the nucleation stage of earthquake occurrence, Int. J. Geophys., 2013, vol. 2013, no. 7, pp. 1–18.

    Article  Google Scholar 

  13. Grobbe, N., Revil, A., and Zhu, Z., Seismoelectric Exploration: Theory, Experiments and Applications, John Willey and Sons, 2020.

    Book  Google Scholar 

  14. Hadjicontis, V., Mavromatou, C., and Ninos, D., Stress induced polarization currents and electromagnetic emission from rocks and ionic crystals, accompanying their deformation, Nat. Hazards Earth Syst. Sci., 2004, vol. 4, nos. 5–6, pp. 633–639.

    Article  Google Scholar 

  15. Hattori, K., Han, P., Yoshino, T., Febriani, F., Yamaguchi, H., and Chen, C.H., Investigation of ULF seismo-magnetic phenomena in Kanto, Japan during 2000–2010: Case studies and statistical studies, Surv. Geophys., 2013, vol. 34, pp. 293–316.

    Article  Google Scholar 

  16. Hayakawa, M., Frontier of Earthquake Prediction Studies, Tokyo: Nihon–Senmontosho–Shuppan, 2012.

    Google Scholar 

  17. Hayakawa, M., Earthquake Prediction with Radio Techniques, Singapore: John Wiley and Sons, 2015. https://doi.org/10.1002/9781118770368.

  18. Hayakawa, M., Earthquake Prediction with Radio Techniques, Singapore: John Wiley and Sons, 2016.

    Google Scholar 

  19. Hayakawa, M. and Hobara, Y., Current status of seismo-electromagnetics for short-term earthquake prediction, Geomatics, Nat. Hazard Risk, 2010, vol. 1, no. 2, pp. 115–155.

    Article  Google Scholar 

  20. Hayakawa, M., Kasahara, Y., Endoh, T., Hobara, Y., and Asai, S., The observation of Doppler shifts of subionospheric LF signal in possible association with earthquakes, J. Geophys. Res., 2012, vol. 117, no. A9, pp. 1–10. https://doi.org/10.1029/2012ja017752

    Article  Google Scholar 

  21. Hayakawa, M., Surkov, V.V., Fukumoto, Y., and Yonaiguchi, N., Characteristics of VHF over horizon signals possibly related to impending earthquakes and a mechanism of seismo-atmospheric perturbations, J. Atmos. Sol. Terr. Phys., 2007, vol. 69, no. 9, pp. 1057–1062.

    Article  Google Scholar 

  22. He, Y., Yang, D., Zhu, R., Qian, J., and Parrot, M., Variations of electron density and temperature in ionosphere based on the DEMETER ISL data, Earth Sci., 2010, vol. 23, no. 4, pp. 349–355.

    Article  Google Scholar 

  23. Ho, Y.Y., Jhuang, H.K., Su, Y.C., and Liu, J.Y., Seismo-ionospheric anomalies in total electron content of the GIM and electron density of DEMETER before the 27 February 2010 M 8.8 Chile earthquake, Adv. Space Res., 2013, vol. 51, no. 12, pp. 2309–2315.

    Article  Google Scholar 

  24. Ikeya, M., Kinoshita, Y., Matsumoto, H., Takaki, S., and Yamanaka, C., A model experiment for electromagnetic wave propagation over long distances using waveguide terminology, Jpn. J. Appl. Phys., 1997, vol. 36, no. 11B, pp. L1558–L1561.

    Article  Google Scholar 

  25. Keller, G.V., Practical Handbook of Physical Properties of Rocks and Minerals, John Willey and Sons, 1989.

    Google Scholar 

  26. Liu, J.Y., Chen, Y.I., Chuo, Y.J., and Tsai, H.F., Variation of total ionospheric content during Chi-Chi earthquake, Geophys. Res. Lett., 2001, vol. 28, no. 7, pp. 1383–1386.

    Article  Google Scholar 

  27. Liu, J.Y., Le, H., Chen, C.H., Liu, L., Wan, W., Su, Y.Z., Sun, Y.Y., Lin, C.H., and Chen, M.Q., Observations and simulations of seismoionospheric GPS total electron content anomalies before the 12 May 2008 Mw = 7.9 Wenchuan earthquake, J. Geophys. Res., 2009, vol. 114, pp. 1–10.

    Google Scholar 

  28. Liu, J.Y., Chen, Y.I., Chen, C.H., Liu, C.Y., Chen, C.Y., Nishihashi, M., Li, J.S., Xia, Y.Q., Oyama, K.I., Hattori, K., and Lin, C.H., Seismo-ionospheric GPS total electron content anomalies observed before the 12th January 2010 M = 7.0 Haiti earthquake, J. Geophys. Res., 2011, vol. 116, no. A4, pp. 1–9.

    Google Scholar 

  29. Lockner, D.A., Johnston, M.J.S., and Byerlee, J.D., A mechanism to explain the generation of earthquake lights, Nature, 1983, vol. 302, no. 5903, pp. 28–33. https://doi.org/10.1038/302028A0

    Article  Google Scholar 

  30. Mahmood, I., Iqbal, M.F., and Shahzad, M.I., Precursor anomalies prior to the 2006 Java and 2016 Yujing earthquakes, J. Geophys. Eng., 2018, vol. 15, no. 4, pp. 1506–1516. https://doi.org/10.1088/1742-2140/aab622

    Article  Google Scholar 

  31. Maurya, A.K., Venkatesham, K., Tiwari, P., Vijaykumar, K., Singh, R., Singh, A.K., and Ramesh, D.S., The 25 April 2015 Nepal earthquake: Investigation of precursor in VLF subionospheric signal, J. Geophys. Res.: Space Phys., 2016, vol. 121, no. 10, pp. 10403–10416.

    Article  Google Scholar 

  32. Meloni, A., Bianchi, A., Mele, G., and Palangio, P., Background electromagnetic noise characterisation: The role of external and internal earth sciences, Ann. Geophys., 2015, vol. 58, no. 3, pp. 1–10.

    Article  Google Scholar 

  33. Miah, M.A.W., Fundamentals of Electromagnetics, Tata McGraw-Hill, 1982.

    Google Scholar 

  34. Molchanov, O.A. and Hayakawa, M., Generation of ULF electromagnetic emissions by microfracturing, Geophys. Res. Lett., 1995, vol. 22, no. 22, pp. 3091–3094.

    Article  Google Scholar 

  35. Nitsan, U., Electromagnetic emissions accompanying fractures of quartz-bearing rocks, Geophys. Res. Lett., 1977, vol. 4, no. 8, pp. 333–336.

    Article  Google Scholar 

  36. Perrone, L., De Santis, A., Abbattista, C., Alfonsi, L., Amoruso, L., Carbone, M., Cesaroni, C., Cianchini, G., De Franceschi, G., De Santis, A., Di Giovambattista, R., Marchetti, D., Pavòn-Carrasco, F.J., Piscini, A., Spogli, L., and Santoro, F., Ionospheric anomalies detected by ionosonde and possibly related to crustal earthquakes in Greece, Ann. Geophys., 2018, vol. 36, no. 2, pp. 361–371.

    Article  Google Scholar 

  37. Petraki, E., Nikolopoulos, D., Nomicos, C., Stonham, J., Cantzos, D., Yannakopoulos, P., and Kottou, S., Electromagnetic pre-earthquake precursors: Mechanisms data and models—A review, J. Earth Sci. Clim. Change, 2015, vol. 6, pp. 1–11.

    Google Scholar 

  38. Pulinets, S., Ionospheric precursors of earthquakes: Recent advance in theory and practical applications, Terr. Atmos. Ocean. Sci., 2004, vol. 15, no. 3, pp. 413–435.

    Article  Google Scholar 

  39. Pulinets, S., Low-latitude atmosphere-ionosphere effects initiated by strong earthquakes preparation process, Int. J. Geophys., 2012, vol. 14, no. 2, pp. 1–14.

    Article  Google Scholar 

  40. Pulinets, S. and Ouzounov, D., The Possibility of Earthquake Forecasting, Bristol, UK: IOP Publishing, 2018.

    Book  Google Scholar 

  41. Pundhir, D., Singh, B., and Singh, O.P., Anomalous TEC variations associated with the strong Pakistan–Iran border region earthquake of 16 April 2013 at a low-latitude station Agra, India, Adv. Space Res., 2014, vol. 53, no. 2, pp. 226–232.

    Article  Google Scholar 

  42. Ray, S., Chakrabarti, S.K., and Sasmal, S., Precursory effect in nighttime VLF signal amplitude for the 18 January 2011 Pakistan earthquake, Ind. J. Phys., 2012, vol. 86, pp. 85–88.

    Article  Google Scholar 

  43. Sharma, S. and Singh, R.P., Effect of VLF electric field emissions related to shallow earthquakes (M ≥ 4.5) in Nepal on atmosphere, J. Ind. Geophys. Union, 2020, vol. 24, no. 3, pp. 42–49.

    Google Scholar 

  44. Sharma, S., Singh, R.P., Singh, B., and Pundhir, D., A multi-experiment approach to ascertain electromagnetic precursors of Nepal earthquakes, J. Atmos. Sol. Terr. Phys., 2020, vol. 197, pp. 1–11.

    Article  Google Scholar 

  45. Sharma, S., Singh, R.P., Singh, B., and Pundhir, D., Anomalous subsurface VLF electric field emissions related to Nepal earthquakes (M = 7.8, M = 7.3), and their generation and propagation mechanisms, Curr. Sci., 2021, vol. 121, no. 4, pp. 551–559.

    Article  Google Scholar 

  46. Singh, B., Electromagnetic Phenomena Related to Earthquakes and Volcanoes, New Delhi: Narosa, 2008.

    Google Scholar 

  47. Singh, B., Singh, R.P., Bansal, V., and Hayakawa, M., Anomalous subsurface VLF electric changes associated with earthquakes and nuclear explosions observed at Agra, J. Atmos. Electr., 1999, vol. 19, pp. 119–134.

    Google Scholar 

  48. Singh, B., Singh, R.P. and Mishra, P.K., Seismo-ionospheric effects as determined from VHF scintillation technique at Agra, in Seismo Electromagnetics: Lithosphere–Atmosphere–Ionosphere Coupling, Hayakawa, M. and Molchanov, O.A., Eds., Tokyo: Terrapub, 2002, pp. 317–323.

    Google Scholar 

  49. Singh, R.P. and Singh, B., Detection and identification of VLF seismo-electromagnetic signals, Curr. Sci., 2000, vol. 78, no. 4, pp. 492–498.

    Google Scholar 

  50. Singh, R.P. and Singh, B., Anomalous subsurface VLF electric field changes related to India–Nepal border earthquake (M = 5.3) of 4 April 2011 and their lithosphere–atmosphere coupling observed at Mathura, J. Atmos. Electr., 2013, vol. 33, pp. 31–39.

    Google Scholar 

  51. Singh, R.P. and Sharma, S., Anomalous subsurface VLF electric field changes related to Delhi–Haryana and Sikkim–Nepal border earthquakes and their effect in atmosphere, in Youth India 2020 Unmask the Future: Opportunity and Challenges, 2016, pp. 186–189.

    Google Scholar 

  52. Singh, R.P., Singh, B., Bansal, V., and Hayakawa, M., VLF electromagnetic noise bursts related to major seismic activities observed at Agra, J. Atmos. Electr., 2000, vol. 20, pp. 7–20.

    Google Scholar 

  53. Singh, R.P., Mishra, P.K., and Singh, B., VLF electric field perturbations associated with Chamoli earthquakes of March/April 1999, Curr. Sci., 2001, vol. 80, pp. 101–106.

    Google Scholar 

  54. Singh, R.P., Singh, B., and Mishra, P.K., and Hayakawa. M., On the lithosphere–atmosphere coupling of seismo-electromagnetic signals, Radio Sci., 2003, vol. 38, pp. 1065–1075.

    Article  Google Scholar 

  55. Singh, R.P., Singh, B., Kushwah, V.K., and Chauhan, R.V.S., Attenuation of ULF–VLF seismo-electromagnetic signals and their propagation to long distances, Ind. J. Radio Space Phys., 2004, vol. 33, pp. 189–195.

    Google Scholar 

  56. Singh, R.P., Kumar, M., Singh, O.P., and Singh, B., Subsurface VLF electric field emissions associated with regional earthquakes, Ind. J. Radio Space Phys., 2009, vol. 38, pp. 220–226.

    Google Scholar 

  57. Singh, V., Singh, B., Kumar, M., and Hayakawa, M., Identification of earthquake sources responsible for subsurface VLF electric field emissions observed at Agra, Phys. Chem. Earth., 2006, vol. 31, nos. 4–9, pp. 325–335.

    Article  Google Scholar 

  58. Sorokin, A.G., and Klyuchevski, A.V., Comment on “Housgal earthquake 5 December 2014, MW = 4.9: Seismic and acoustic effects'', J. Seismol., 2020, vol. 24, pp. 1291–1296.

    Article  Google Scholar 

  59. Sumimoto, N., What kind of electromagnetic phenomena originating in earth crust are observable at earth surface?, in Electromagnetic Phenomena Related to Earthquake Prediction, Hayakawa, M. and Fujinawa, Y., Eds., Tokyo: Terra Sci., 1994, pp. 511–521.

    Google Scholar 

  60. Takeuchi, A. and Nagahama, H., Voltage changes induced by stick-slip of granites, Geophys. Res. Lett., 2001, vol. 28, no. 17, pp. 3365–3368.

    Article  Google Scholar 

  61. Tsarev, V.A. and Sasaki, H., Low frequency seismogenic electromagnetic radiation: How does it propagate in the Earth’s crust and where it can be detected?, in Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, Hayakawa, M., Ed., Tokyo: Terra Sci., 1999, pp. 383–393.

    Google Scholar 

  62. Uyeda, S., Nagao, T., and Kamogawa, M., Short-term earthquake prediction current status of seismo-electromagnetics, Tectonophysics, 2009, vol. 470, nos. 3–4, pp. 205–213. https://doi.org/10.1016/j.tecto.2008.07.019

    Article  Google Scholar 

  63. Wang, L., Zhang, S., Zhang, Y., and Liu, D., Discussion on several important problems in earthquake-related electromagnetic disturbance monitoring in China, Earthquake Sci., 2011, vol. 24, no. 6, pp. 583–591.

    Article  Google Scholar 

  64. Yamada, I., Masuda, K., and Mizutani, H., Electromagnetic and acoustic emissions associated with rock fracture, Phys. Earth Planet. Inter., 1989, vol. 57, nos. 1–2, pp. 157–168.

    Article  Google Scholar 

  65. Yavorovich, L.V., Bespalko, A.A., Fedotov, P.I., and Baksht, R.B., Electromagnetic radiation generated by acoustic excitation of rock samples, Acta Geophys., 2016, vol. 64, pp. 1446–1461.

    Article  Google Scholar 

  66. Zhao, B., Wang, M., Yu, T., Xu, G., Wan, W., and Liu, L., Ionospheric total electron content variations prior to the 2008 Wenchuan earthquake, Int. J. Remote Sens., 2010, vol. 31, no. 13, pp. 3545–3557. https://doi.org/10.1080/01431161003727622

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Thanks are to the World Data Centre, Kyoto, Japan, and United States Geological Survey for furnishing magnetic storm (ΣKp) and earthquake data.

Funding

The authors are thankful to the Ministry of Earth Sciences, Government of India, New Delhi for giving financial support through a major research project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raj Pal Singh, Sarita Sharma or Devbrat Pundhir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj Pal Singh, Sharma, S. & Pundhir, D. Effect of VLF Electromagnetic Radiations Associated with Some Moderate Shallow Earthquakes (4.9 ≤ M ≤ 6, Depth ≤ 20 Km) on the Atmosphere as Observed in the Terrestrial Antenna at Mathura. Geomagn. Aeron. 62, 663–674 (2022). https://doi.org/10.1134/S0016793222050140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793222050140

Navigation