Skip to main content
Log in

Effect of VLF electric field changes associated with major shallow earthquakes (M = 5.6–5.9) occurred in Indian subcontinent, on the atmosphere

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Using a terrestrial antenna routine observations of the amplitude of vertical component of electric field of seismogenic VLF emissions (frequency, f = 3.012 kHz) is in progress at the Mathura observing station (Lat. 27.49°N, Long. 77.67°E) since 24 March 2011. In this paper, the VLF data obtained from terrestrial antenna have been analysed statistically for the months of April 2012, July 2013, September 2013, and October 2013 for examining the effect of five major shallow earthquakes (M = 5.6–5.9, depth < 10 km) that have occurred in the Indian subcontinent within circular region of radius 3300 km during these months assuming Mathura observing station as the centre. The mean (m) and two standard deviations around the mean (m \(\pm 2\sigma )\) criterion is used for analysing the VLF data. The anomalous VLF amplitude enhancements in the vertical component of the electric field are seen, 1–13 days prior to onset of four seismic events while for one seismic event, the enhancement is co-seismic. Further, the effects of magnetic storms, lightning activity, local power line emissions and local building noises are also studied on the VLF data and it is noticed that these enhancements are not correlated with these spurious noises. For confirming the association of days of VLF amplitude enhancements with seismic activities correlation coefficients and probability (using null hypothesis) for the pair of focal depth and precursory time are computed. The values of correlation coefficient and probability for this pair are found 0.87 and 0.88 respectively. These fairly large values of correlation coefficient and probability indicate a strong association between days of VLF amplitude enhancements and seismic activities. Further, the association of amplitude anomalies with seismic events is also confirmed by using another statistical approach. Also, the possible mechanisms for the generation and propagation of VLF electromagnetic radiations are discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M B Gokhberg, V A Morgunov, T Yoshino and I Tomizawa J. Geophys. Res. 87 7824 (1982)

    ADS  Google Scholar 

  2. M Parrot and M Mogilevsky Phys. Earth Planet. Inter. 57 86 (1989)

    ADS  Google Scholar 

  3. R P Singh, P K Mishra and B Singh Curr. Sci. 80 101 (2001)

    Google Scholar 

  4. R P Singh, B Singh, P K Mishra and M Hayakawa Radio Sci. 38 1065 (2003)

    ADS  Google Scholar 

  5. O A Molchanov et al Nat. Haz. Earth Syst. Sci. 6 745 (2006)

    ADS  Google Scholar 

  6. J Y Liu et al J. Geophys. Res. 114 1 (2009)

    Google Scholar 

  7. X Gao, G Zhang and C Roe Inter. J. Dam. Mech. 19 75 (2010)

    Google Scholar 

  8. M Hayakawa, Y Kasahara, T Endoh, Y Hobara and S Asai J. Geophys. Res. 117 1 (2012)

    Google Scholar 

  9. Y Hobara, R Nakamura, M Suzuki, M Hayakawa and M Parrot J. Atoms. Electr. 33 21 (2013)

    Google Scholar 

  10. D Pundhir, B Singh and O P Singh India Adv. Space. Res. 53 226 (2014)

    ADS  Google Scholar 

  11. L Perrone et al Ann. Geophys. 36 361 (2018)

    ADS  Google Scholar 

  12. D Shi, S L Kempere, J Shi, Z Wu and W Zhao PNAS 117 24742 (2020)

    ADS  Google Scholar 

  13. M Parrot Handbook of atmospheric electrodynamics (Ed.) H Volland (Tokyo: CRC Press) chapter I Vol II p 95 (1995)

  14. E Petraki, D Nikolopoulos, C Nomicos, J Stonham and D Cantzos J. Earth Sci. Clim. Change. 6 1 (2015)

    Google Scholar 

  15. V P Aravena and E G Cordaro Nat. Hazards Earth Syst. Sci. 19 1639 (2019)

    ADS  Google Scholar 

  16. A G Sorokin and A V Klyuchev Ski J. Seismo. 24 1291 (2020)

    ADS  Google Scholar 

  17. L Conti, P Picozza and A Sotgui Font. Earth Sci. 676766 (2021)

  18. M Hayakawa Nihon—Senmontosho–Shuppan Pub. Co. Tokyo (2012)

  19. M Hayakawa Earthquake prediction with Radio Techniques p 1 (2016)

  20. S Pulinets and D Ouzounov (Bristol: IOP Publishing)(2018)

  21. D Ouzounov, S Pulinets, K Hattori, P Taylor American Geophysical Union, 365 (2018)

  22. N Grobbe, A Revil, Z Zhu, E Slob Seismoelectric Exploration:—Theory, Experiments and Applications. AGU 252 p 496 (2020)

  23. T Nagao et al J. Geodyn. 33 401 (2002)

    Google Scholar 

  24. R P Singh and M Kumar J. Radio Space Phys. 38 220 (2009)

    Google Scholar 

  25. K Obara and Y Ito Earth Planets Space. 57 321 (2005)

    ADS  Google Scholar 

  26. Y Fujinawa, K Takahashi, Y Noda, H Iitaka and S Yazaki Int. J. Geophys. 1 (2011)

  27. Y Fujinawa, Y Noda, K Takahashi, M Kobayashi, K Takamatsu and J Natsumeda Int. J. Geophys. 1 (2013)

  28. R P Singh and B Singh J. Atmos. Electr. 33 31 (2013)

    Google Scholar 

  29. S Sharma and R P Singh J. Atoms. Solar. Terr. phys. 197 1 (2020)

    Google Scholar 

  30. C Fidani, M Orsini, G Iezze, N Vicentini, F Stoppa (2020) Earth Sci.

  31. S Sharma, R P Singh, D Pundhir and B Singh Geomag. Aero. 61 619 (2021)

    Google Scholar 

  32. B Singh, R P Singh, V Bansal and M Hayakawa J. Atmos. Electr. 19 119 (1999)

    Google Scholar 

  33. R P Singh, B Singh, V Bansal and M Hayakawa J. Atmos. Electr. 20 7 (2000)

    Google Scholar 

  34. B Singh, R P Singh and P K Mishra Terra Sci. Pub, Tokyo pp 317 (2002)

  35. V A Morgounov, T Ondoh and S Nagai TERRAPUB, Tokyo 409(1994)

  36. D Pundhir, B Singh, R P Singh and S Sharma Geomagn. Aeron. 61 449 (2021)

    ADS  Google Scholar 

  37. S Sharma, R P Singh, B Singh and D Pundhir Curr. Sci. 121 551 (2021)

    Google Scholar 

  38. S Sharma, R P Singh, D Pundhir and B Singh Geomagn. Aeron. 61 619 (2021)

    ADS  Google Scholar 

  39. M Hayakawa, Y Kasahara, T Nakamura, F Muto, T Horie, S Maekawa, Y Hobara, A A Rozhnoi, M Solovieva and O A Molchanov J. Geophys. Res. 115 (2010)

  40. N Sumimoto Terra Sci. Pub. Co. Tokyo pp 511 (1994)

  41. R P Singh and B Singh J. Radio Space Phys. 33 189 (2004)

    Google Scholar 

  42. S Sharma and R P Singh J. Earth Space Phys. 47 1 (2022)

    Google Scholar 

  43. S Sharma and R P Singh J. Ind. Geophys. Union 24 42 (2020)

    Google Scholar 

  44. A K Maurya, K Venkatesham, P Tiwari, K Vijaykumar and R Singh J. Geophys. Res. 121 10403 (2016)

    Google Scholar 

  45. O A Molchanov and M Hayakawa J. Geophys. Res. 103 17489 (1998)

    ADS  Google Scholar 

  46. M Hayakawa, V V Surkov and Y Fukumoto J. Atmos. Solar. Terr. Phys. 69 1057 (2007)

    ADS  Google Scholar 

  47. Y Zhou, J Yang, F Zhu and F Su Geod. Geodyn. 8 221 (2017)

    Google Scholar 

  48. D R Lakshmi J. Radio Space Phys. 12 1 (1983)

    Google Scholar 

  49. S K Jain and B Singh J. Geophys. Res. (USA) 82 773 (1977)

    Google Scholar 

  50. D R Lakshmi, B Veenadhari, R S Dabas and B M Reddy Ann. Geophys. (France) 15 306 (1997)

    ADS  Google Scholar 

  51. R P Singh and M Kumar J. Radio Space Phys. 38 220 (2009)

    Google Scholar 

  52. A Subedi, B Adhikari and R K Mishra Himal. Phys. 6 80 (2017)

    Google Scholar 

  53. A Choudhary, B K De, A Guha and R Roy J. Geophys. Res. 120 778 (2015)

    Google Scholar 

  54. Y Enomoto and H Hashimoto Terra Sci. Pub. Co. Tokyo pp. 261 (1994)

  55. A Meloni, C Bianchi, G Mele and P Palangio Ann. Geophys. 58 (2015)

  56. C E R Bruce and R H Golde J. Inst. Electr. Engg. 88 487 (1941)

    Google Scholar 

  57. Chauhan et al Indian J. Radio Space Phys. 41 543 (2012)

    Google Scholar 

  58. T Rikitake Earthquake Prediction (Amsterdam: Elsevier) (1976)

  59. Y Fujinawa and K Takahashi Terra Sci. Pub. Co. Tokyo pp. 131 (1994)

  60. J Y Liu, Y J Chuo, S J Shan, Y B Tsai, Y I Chen, S A Pulinets and S B Yu Ann. Geophys. 22 1585 (2004)

    ADS  Google Scholar 

  61. K Sharma, R M Das, R S Dabas, K G M Pillai, S C Garg and A K Mishra Adv. Space Res. 42 1238 (2008)

    ADS  Google Scholar 

  62. R P Singh and B Singh Curr. Sci. 78 492 (2000)

    Google Scholar 

  63. V Frid and A Rabinovitch J. Phys. D. Appl. Phys. 36 1620 (2003)

    ADS  Google Scholar 

  64. K Mikayi, M Hayakawa and O A Molchanov TERRAPUB, Tokyo 229 (2002)

  65. A V Shvets and M Hayakawa Chem. Earth 29 627 (2004)

    ADS  Google Scholar 

  66. S A Pulinets and K Boyarchuk (Berlin: Springer) (2004)

  67. M Ikey, Y Kinoshita and H Matsumoto J. Appl. Phys. 36 L1558 (1997)

    Google Scholar 

  68. V A Tsarev and H L Sasaki, M Hayakawa Terra Sci. Pub. Co. Tokyo pp.383 (1999)

  69. E R Mognaschi Atti Ticinese di Scinese Della, Terra. Italy. 43 111 (2002)

  70. Y Fujinawa and K Takashi Phys. Earth Planet. Inter. 105 249 (1998)

    ADS  Google Scholar 

  71. S S De, B K De, B Bandhyopadhyay, S Paul, D De, S Barui, M Sanfui, P Pal and T K Das Rom. J. 56 1208 (2011)

    Google Scholar 

  72. P Hazra and S Barui J. Phys. 60 1218 (2015)

    Google Scholar 

  73. K Ohta, N Watanabe and M Hayakawa Int. J. Remote Sens. 28 3121 (2007)

    Google Scholar 

  74. M Li, C Yu, Y Zhang, H Zhao, X Zhang, W Li, P Zhang and L Zhang Open J. Earthq. Res. 9 50 (2020)

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Ministry of Earth Sciences, Government of India, New Delhi for giving the financial support in the form of major research project: MOES/PO(Seismic)/1(16)/2008. Thanks are also to World Data Centre, Kyoto, Japan and United States Geological Survey, for helping us with the magnetic storm (ΣKp) and earthquake data respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Pal Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, A., Singh, R.P. Effect of VLF electric field changes associated with major shallow earthquakes (M = 5.6–5.9) occurred in Indian subcontinent, on the atmosphere. Indian J Phys 97, 3367–3378 (2023). https://doi.org/10.1007/s12648-023-02688-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02688-x

Keywords

Navigation