Skip to main content
Log in

Dependence of the Occurrence of Coronal Mass Ejections on the Initial Length of the Eruptive Prominence

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

A model of the eruption of a magnetic flux rope with ends rigidly fixed in the photosphere is analyzed. Long and short flux ropes exhibit different scenarios of eruption, other conditions being equal. Short flux ropes accelerate quickly but for a short time, and they can be quite easily stopped at a relatively low altitude, leading to so-called failed eruptions. The eruption of a long flux rope is more likely to result in its rise to a greater altitude and the formation of a coronal mass ejection. This trend is traced in real observations of eruptive phenomena on the Sun.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Amari, T., Luciani, J., Mikic, Z., and Linker, J., A twisted flux rope model for coronal mass ejections and two-ribbon flares, Astrophys. J., 2000, vol. 529, no. 2, pp. L49–L52.

    Article  Google Scholar 

  2. Antiochos, S.K., Dahlburg, R.B., and Klimchuk, J.A., The magnetic field of solar prominences, Astrophys. J., 1994, vol. 420, no. 1, pp. L41–L44.

    Article  Google Scholar 

  3. Aulanier, G., DeVore, C.R., and Antiochos, S.K., Solar prominence merging, Astrophys. J., 2002, vol. 646, no. 2, pp. 1349–1357.

    Article  Google Scholar 

  4. Ballester, J.L., A note on magnetic fields and electric currents in solar prominences, Sol. Phys., 1984, vol. 94, pp. 151–154.

    Article  Google Scholar 

  5. Bateman, G., MHD Instabilities, Cambridge, Mass.: Massachusetts Institute of Technology, 1978.

    Google Scholar 

  6. Cargill, P.J., Chen, J., and Garren, D.A., Oscillations and evolution of curved current-carrying loops in the solar corona, Astrophys. J., 1994, vol. 423, no. 2, pp. 854–870.

    Article  Google Scholar 

  7. Chen, J., Effects of toroidal forces in current loops embedded in a background plasma, Astrophys. J., 1989, vol. 338, no. 1, pp. 453–470.

    Article  Google Scholar 

  8. DeVore, C.R. and Antiochos, S.K., Dynamical formation and stability of helical prominence magnetic fields, Astrophys. J., 2000, vol. 539, no. 2, pp. 954–963.

    Article  Google Scholar 

  9. Engvold, O., Description and classification of prominences, in Solar Prominences, Vial, J.-C. and Engvold, O., Eds., Cham, Switzerland: Springer, 2015, pp. 31–60.https://doi.org/10.1007/978-3-319-10416-4

    Book  Google Scholar 

  10. Filippov, B., Mass of prominences experiencing failed eruptions, Publ. Astron. Soc. Aust., vol. 38.https://doi.org/10.1017/pasa.2021.14

  11. Filippov, B.P., Eruptivnye protsessy na Solntse (Eruptive Processes on the Sun), Moscow: Fizmatlit, 2007.

  12. Filippov, B., Failed prominence eruptions near 24 cycle maximum, Mon. Not. R. Astron. Soc., 2020, vol. 494, pp. 2166–2177.https://doi.org/10.1093/mnras/staa896

    Article  Google Scholar 

  13. Forbes, T.G., A review on the genesis of coronal mass ejections, J. Geophys. Res., 2000, vol. 105, no. A10, pp. 23153–23166.

    Article  Google Scholar 

  14. Forbes, T.G. and Isenberg, P.A., A catastrophe mechanism for coronal mass ejections, Astrophys. J., 1991, vol. 373, no. 1, pp. 294–307.

    Article  Google Scholar 

  15. Forbes, T.G. and Priest, E., Photospheric magnetic field evolution and eruptive flares, Astrophys. J., 1995, vol. 446, no. 1, pp. 377–389.

    Article  Google Scholar 

  16. Harrison, R.A., The nature of solar flares associated with coronal mass ejection, Astron. Astrophys., 1995, vol. 304, pp. 585–594.

    Google Scholar 

  17. Isenberg, P.A. and Forbes, T.G., A three-dimensional line-tied magnetic field model for solar eruptions, Astrophys. J., 2007, vol. 670, no. 2, pp. 1453–1466.

    Article  Google Scholar 

  18. Kadomtsev, B.B., Hydromagnetic stability of plasma, in Voprosy teorii plazmy (Problems in the Theory of Plasma), Leontovich, M.A., Ed., Moscow: Gosatomizdat, 1963, vol. 2, pp. 132–176.

  19. Kippenhahn, R. and Schlüter, A., Eine Theorie der solaren Filamente, Z. Astrophys., 1957, vol. 43, pp. 36–62.

    Google Scholar 

  20. Kliem, B. and Török, T., Torus instability, Phys. Rev. Lett., 2006, vol. 96, no. 25, p. 255002.

  21. Kulikova, G.N., Molodenskii, M.M., Starkova, L.I., and Filippov, B.P., Currents in the active region HR16927 according to Hα data, Soln. Dannye, 1986, no. 10, Leningrad: Nauka, 1986, pp. 60–65.

  22. Kuperus, M. and Raadu, M.A., The support of prominences formed in neutral sheets, Astron. Astrophys., 1974, vol. 31, pp. 189–193.

    Google Scholar 

  23. Labrosse, N., Heinzel, P., Vial, J.-C., Kucera, T., Parenti, S., Gunar, S., Schmieder, B., and Kilper, G., Physics of solar prominences. I. Spectral diagnostics and non-LTE modelling, Space Sci. Res., 2010, vol. 151, pp. 243–332.

    Google Scholar 

  24. Landau, L.D. and Lifshits, E.M., Gidrodinamika (Fluid Dynamics), Moscow: Fizmatlit, 2001.

    Google Scholar 

  25. Landau, L.D. and Lifshits, E.M., Elektrodinamika sploshnykh sred (Electrodynamics of Continuous Media), Moscow: Fizmatlit, 2005.

  26. Lin, J., Forbes, T.G., Isenberg, P.A., and Demoulin, P., The effect of curvature on flux-rope models of coronal mass ejections, Astrophys. J., 1998, vol. 504, no. 2, pp. 1006–1019.

    Article  Google Scholar 

  27. Longcope, D.W. and Forbes, T.G., Breakout and tether-cutting eruption models are both catastrophic (sometimes), Sol. Phys., 2014, vol. 289, pp. 2091–2122.

    Article  Google Scholar 

  28. Low, B.C., Coronal mass ejections, magnetic flux ropes, and solar magnetism, J. Geophys. Res., 2001, vol. 106, pp. 25141–25164.

    Article  Google Scholar 

  29. Lundquist, S., On the stability of magneto-hydrostatic fields, Phys. Rev., 1951, vol. 83, pp. 307–311.

    Article  Google Scholar 

  30. McCauley, P.I., Su, Y.N., Schanche, N., Evans, K.E., Su, C., McKillop, S., and Reeves, K.K., Prominence and filament eruptions observed by the solar dynamics observatory: Statistical properties, kinematics, and online catalog, Sol. Phys., 2015, vol. 290, pp. 1703–1740. https://doi.org/10.1007/s11207-015-0699-7

    Article  Google Scholar 

  31. Menzel, D.H., Magneto-hydrostatics and solar prominences, Astron. J., 1951, vol. 56, no. 1, pp. 135–135.

    Article  Google Scholar 

  32. Molodenskii, M.M. and Filippov, B.P., fast motion of filaments in solar activity regions. II, Astron. Zh., 1987, vol. 64, no. 5, pp. 1079–1087.

    Google Scholar 

  33. Olmedo, O. and Zhang, J., Partial torus instability, Astrophys. J., 2010, vol. 718, pp. 433–440. https://doi.org/10.1088/0004-637X/718/1/433

    Article  Google Scholar 

  34. Osovets, S.M., Plasma loop in the electromagnetic field, in Fizika plazmy i problema upravlyaemykh termoyadernykh reaktsii (Plasma Physics and the Problem of Controlled Thermonuclear Reaction), Leontovich, M.A., Ed., Moscow: AN SSSR, 1958, vol. 2, pp. 238–241.

  35. Priest, E.R. and Forbes, T.G., Magnetic field evolution during prominence eruption and two-ribbon flares, Sol. Phys., 1990, vol. 126, no. 2, pp. 319–350.

    Article  Google Scholar 

  36. Priest, E.R. and Forbes, T.G., The magnetic nature of solar flares, Astron. Astrophys. Rev., 2002, vol. 10, pp. 313–377.

    Article  Google Scholar 

  37. Shafranov, V.D., Plasma equilibrium in the magnetic field, in Voprosy teorii plazmy (Problems in the Theory of Plasma), Leontovich, M.A., Ed., Moscow: Gosatomizdat, 1963, vol. 2, pp. 92–131.

  38. Sinha, S., Srivastava, N., and Nandy, D., Solar filament eruptions as precursors to flare-CME events: Establishing the temporal connection, Astrophys. J., 2019, vol. 880, no. 2, p. 84.

  39. Srivastava, N., Ambastha, A., and Bhatnagar, A., Evolution of helically twisted prominence structures of March 11, 1979, Sol. Phys., 1991, vol. 133, pp. 339–355.

    Article  Google Scholar 

  40. Titov, V.S. and Demoulin, P., Basic topology of twisted magnetic configurations in solar flares, Astron. Astrophys., 1999, vol. 351, pp. 707–720.

    Google Scholar 

  41. Török, T., Kliem, B., and Titov, VS., Ideal kink instability of a magnetic loop equilibrium, Astron. Astrophys., 2004, vol. 413, pp. L27–L30.

    Article  Google Scholar 

  42. van Tend, W. and Kuperus, M., The development of coronal electric current system in active regions and their relation to filaments and flares, Sol. Phys., 1978, vol. 59, no. 1, pp. 115–127.

    Article  Google Scholar 

  43. Vršnak, B., Ruždjak, V., Brajša, R., and Džubur, A., Structure and stability of prominence with helical structure, Sol. Phys., 1988, vol. 116, pp. 45–60.

    Article  Google Scholar 

  44. Zaitsev, V.V. and Stepanov, A.V., Prominence activation by increase in electric current, J. Atmos. Sol.-Terr. Phys., 2018, vol. 179, pp. 149–153.

    Article  Google Scholar 

  45. Zhang, J., Dere, K.P., Howard, R.A., Kundu, M.R., and White, S.M., On the temporal relationship between coronal mass ejections and flares, Astrophys. J., 2001, vol. 559, no. 1, pp. 452–462.

    Article  Google Scholar 

  46. Zuccarello, F.P., Meliani, Z., and Poedts, S., Numerical modeling of the initiation of coronal mass ejections in active region NOAA 9415, Astrophys. J., 2012, vol. 758, no. 2, p. 117.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to the reviewers for their helpful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Filippov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippov, B.P. Dependence of the Occurrence of Coronal Mass Ejections on the Initial Length of the Eruptive Prominence. Geomagn. Aeron. 62, 151–158 (2022). https://doi.org/10.1134/S0016793222030082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793222030082

Navigation