Skip to main content
Log in

Effect of Weak Magnetic Storms on the Propagation of HF Radio Waves

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Vertical and oblique sounding data for northeastern Russia have been used to analyze the conditions for the propagation of radio waves during weak geomagnetic storms observed in fall seasons of 2018–2020 at minimal solar activity. Even during weak storms, the maximum observed frequencies have been found to decrease by 25–35% in daytime and by 40–50% at night. Variations in the parameters of the distribution of high frequency radio waves during disturbances depend on the spatio-temporal dynamics of large scale structures of the high-latitude ionosphere, which, in turn, depends on the processes of magnetosphere–ionosphere interaction. Here, the depth and duration of the negative disturbance are larger if the geomagnetic storm occurs on a disturbed background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Akasofu, S.I., Energy coupling between the solar wind and the magnetosphere, Space Sci. Rev., 1981, vol. 28, no. 2, pp. 121–190. https://doi.org/10.1007/BF00218810

    Article  Google Scholar 

  2. Aruliah, A.L. and Muller-Wodarg, I.C.F., Consequences of geomagnetic history on the high-latitude thermosphere and ionosphere: Averages, J. Geophys. Res., 1999, vol. 104, no. 12, pp. 28073–28088.

    Article  Google Scholar 

  3. Blagoveshchenskii, D.V., Rasprostranenie dekametrovykh radiovoln vo vremya geomagnitnykh vozmushchenii (Propagation of Decameter Radiowaves during Geomagnetic Disturbances), St. Petersburg: GUAP, 2011.

  4. Buonsanto, M.J., Ionospheric storms: A review, Space Sci. Rev., 1999, vol. 88, nos. 3–4, pp. 563–601.

    Article  Google Scholar 

  5. Burke, W.J., Huang, C.Y., Marcos, F.A., and Wise, J.O., Interplanetary control of thermospheric densities during large magnetic storms, J. Atmos. Sol. Terr. Phys., 2007, vol. 69, no. 3, pp. 279–287. https://doi.org/10.1016/j.jastp.2006.05.027

    Article  Google Scholar 

  6. Danilov, A.D., F-region response to geomagnetic disturbances (review), Geliogeofiz. Issled., 2013, no. 5, pp. 1–33.

  7. Danilov, A.D. and Laštovička, J., Effects of geomagnetic storms on the ionosphere and atmosphere, Int. J. Geomagn. Aeron., 2001, vol. 2, no. 3, pp. 209–224.

    Google Scholar 

  8. Danilov, A.D. and Konstantinova, A.V., Behavior of the ionospheric F region prior to geomagnetic storms, Adv. Space Res., 2019, vol. 64, no. 7, pp. 1375–1387.

    Article  Google Scholar 

  9. Deminov, M.G. and Shubin, V.N., Empirical model of the location of the main ionospheric trough, Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 3, pp. 348–355.

  10. Echer, E., Tsurutani, B.T., and Gonzalez, W.D., Interplanetary origins of moderate (–100 nT < Dst ≤ –50 nT) geomagnetic storms during solar cycle 23 (1996–2008), J. Geophys. Res., 2013, vol. 118, no. 1, pp. 385–392. https://doi.org/10.1029/2012JA018086

    Article  Google Scholar 

  11. Fujiwara, H. and Miyoshi, Y., Characteristics of large-scale traveling atmospheric disturbances during quite and disturbed periods simulated by a whole general circulation model, Geophys. Res. Lett., 2006, vol. 33, L10108. https://doi.org/10.1029/206GL027103

    Article  Google Scholar 

  12. Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B.T., and Vasyliunas, V.M., What is a geomagnetic storm?, J. Geophys. Res., 1994, vol. 99, no. A4, pp. 5771–5792.

    Article  Google Scholar 

  13. Goodman, J.M., Ballard, J.W., Patterson, J.D., and Gaffney, B., Practical measures for combating communication system impairments caused by large magnetic storms, Radio Sci., 2006, vol. 41, no. 6. RS6S41. https://doi.org/10.1029/2005RS003404

    Article  Google Scholar 

  14. Krinberg, I.A. and Tashchilin, A.V., Ionosfera i plazmosfera (The Ionosphere and the Plasmasphere), Moscow: Nauka, 1984.

  15. Kurkin, V.I., Matyushonok, S.M., Pirog, O.M., Poddelsky, I.N., Ponomarchuk, S.N., Rozanov, S.V., and Smirnov, V.F., The dynamics of the auroral oval and ionospheric trough boundaries according to data from the DMSP satellites and ground-based ionosonde network, Adv. Space Res., 2006, vol. 38, no. 8, pp. 1772–1777.

    Article  Google Scholar 

  16. Kurkin, V.I., Pirog, O.M., Polekh, N.M., Mikhalev, A.V., Poddelsky, I.N., and Stepanov, A.E., Ionospheric response to geomagnetic disturbances in the north-eastern region of Asia during the minimum of 23rd cycle of solar activity, J. Atmos. Solar Terr. Phys., 2008, vol. 70, no. 18, pp. 2346–2357.

    Article  Google Scholar 

  17. Kuznetsov, V.D., Space weather and risks in space activities, Kosm. Tekh. Tekhnol., 2014, no. 3, pp. 3–13.

  18. Liu, H.-L., Variability and predictability of the space environment as related to lower atmosphere forcing: Space weather and terrestrial weather, Space Weather, 2016, vol. 14, no. 9, pp. 634–658. https://doi.org/10.1002/2016SW001450

    Article  Google Scholar 

  19. Marmet, P., New digital filter for the analysis of experimental data, Rev. Sci. Instrum., 1979, vol. 50, pp. 79–83.

    Article  Google Scholar 

  20. Mendillo, M., Storms in the ionosphere: Patterns and processes for total electron content, Rev. Geophys., 2006, vol. 44, RG4001. https://doi.org/10.1029/2005RG000193

    Article  Google Scholar 

  21. Pirog, O.M., Romanova, E.B., Polekh, N.M., Tashchilin, A.V., and Zherebtsov, G.A., The main ionospheric trough in the East Asian region: Observation and modeling, J. Atmos. Solar Terr. Phys., 2009, vol. 71, no. 1, pp. 49–60.

    Article  Google Scholar 

  22. Podlesnyi, A.V., Bryn’ko, I.G., Kurkin, V.I., Berezovskii, V.A., Kiselev, A.M., and Petukhov, E.V., Multifunctional chirp-ionosonde for ionospheric monitoring, Geliogeofiz. Issled., 2013, no. 4, pp. 24–31.

  23. Polekh, N.M., Zolotukhina, N.A., Romanova, E.B., Pono-marchuk, S.N., Kurkin, V.I., and Podlesnyi, A.V., Ionospheric effects of magnetospheric and thermospheric disturbances on March 17–19, 2015, Geomagn. Aeron. (Engl. Transl.), 2016, vol. 56, no. 5, pp. 557–571.

  24. Prölss, G., Ionospheric F-region storms, in Handbook of Atmospheric Electrodynamics, Volland, H., Ed., Boca Raton: CRC Press, 1995, vol. 2, pp. 195–248.

    Google Scholar 

  25. Prölss, G.W., Ionospheric F-region storms: Unsolved problems, in Characterising the Ionosphere, Meeting Proc. RTO-MP-IST-056, Fairbanks, United States, 12–16 June 2006, Neuilly-sur-Seine, France, 2006, vol. 10, pp. 10-1–10-20.

  26. Rogers, N.C., Warington, E.M., and Jones, T.B., Oblique ionogram features associated with off-great-circle HF propagation at high and subauroral latitudes, IEE Proc. Microwaves, Antennas Propag., 2003, vol. 150, no. 4, pp. 295–300. https://doi.org/10.1049/ip-map:20030552.

  27. Sheiner, O., Rakhlin, A., Fridman, V., and Vybornov, F., New ionospheric index for space weather services, Adv. Space Res., 2020, vol. 66, no. 6, pp. 1415–1426.

    Article  Google Scholar 

  28. Takahashi, T. and Shibata, K., Sheath-accumulating propagation of interplanetary coronal mass ejection, Astrophys. J. Lett., 2017, vol. 837, no. 2, id L17.

  29. Tsugawa, T., Saito, A., and Otsuka, Y., A statistical study of large-scale traveling ionospheric disturbances using the GPS network in Japan, J. Geophys. Res., 2004, vol. 109, A06302. https://doi.org/10.1029/2003JA010302

    Article  Google Scholar 

  30. Turner, N.E., Cramer, W.D., Earles, S.K., and Emery, B.A., Geoefficiency and energy partitioning in CIR-driven and CME-driven storms, J. Atmos. Solar Terr. Phys., 2009, vol. 71, nos. 10–11, pp. 1023–1031. https://doi.org/10.1016/j.jastp.2009.02.005

    Article  Google Scholar 

  31. URL catalog. http://www.iki.rssi.ru/pub/omni/catalog/.

  32. URL CME: https://cdaw.gsfc.nasa.gov/CME_list/.

  33. URL guvi. http://guvitimed.jhuapl.edu/guvi-.

  34. URL kyoto. http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html.

  35. URL nasa. https://cdaweb.gsfc.nasa.gov/cgi-bin/eval1.cgi.

  36. URL solar. http://www.solen.info/solar/old_reports.

  37. URL warehouse. ftp://ftp.swpc.noaa.gov/pub/warehouse/.

  38. Uryadov, V.P., Ponyatov, A.A., Vertogradov, G.G., Vertogradov, V.G., Kurkin, V.I., and Ponomarchuk, S.N., Dynamics of the auroral oval during geomagnetic disturbances observed by oblique sounding of the ionosphere in the Eurasian longitudinal sector, Int. J. Geomagn. Aeron., 2005, vol. 6, no. 1, GI1002. https://doi.org/10.1029/2004GI000078

    Article  Google Scholar 

  39. Uryadov, V.P., Vybornov, F.I., Kolchev, A.A., Vertogradov, G.G., Sklyarevsky, M.S., Egoshin, I.A., Shumaev, V.V., and Chernov, A.G., Impact of heliogeophysical disturbances on ionospheric HF channels, Adv. Space Res., 2018, vol. 61, no. 7, pp. 1837–1849. https://doi.org/10.1016/j.asr.2017.07.003

    Article  Google Scholar 

  40. Uryadov, V.P., Vybornov, F.I., and Pershin, A.V., Variations of the frequency range of HF signals on the subauroral path during magnetic–ionospheric disturbances in October 2016, Radiophys. Quantum Electron., 2021, vol. 64, no. 2, pp. 77–87.

    Article  Google Scholar 

  41. Warrington, E.M., Stocker, A.J., and Siddle, D.R., Measurement and modeling of HF channel directional spread characteristics for northerly paths, Radio Sci., 2006, vol. 41, no. 2, RS2006. https://doi.org/10.1029/2005RS003294

    Article  Google Scholar 

  42. Yiğit, E., Knížová, P.K., Georgieva, K., and Ward, W., A review of vertical coupling in the atmosphere–ionosphere system: Effects of waves, sudden stratospheric warmings, space weather, and of solar activity, J. Atm. Sol.-Terr. Phys., 2016, vol. 141, pp. 1–12. https://doi.org/10.1016/j.jastp.2016.02.011

    Article  Google Scholar 

  43. Zolotukhina, N., Polekh, N., Kurkin, V., Rogov, D., Romanova, E., and Chelpanov, M., Ionospheric effects of St. Patrick’s storm over Asian Russia: 17–19 march 2015, J. Geophys. Res., 2017, vol. 122, no. 2, pp. 2484–2504. https://doi.org/10.1002/2016JA023180

    Article  Google Scholar 

  44. Zolotukhina, N.A., Kurkin, V.I., and Polekh, N.M., Ionospheric disturbances over East Asia during intense December magnetic storms of 2006 and 2015: Similarities and differences, Sol.-Terr. Phys., 2018, vol. 4, no. 3, pp. 28–42.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The results were obtained from observations conducted with the use of equipment of the Angara Center for Collective Use (http://ckprf.ru/ckp/3056). We are grateful to managers of the sites http://guvitimed.jhuapl.edu/guvi-), http://www.iki.rssi.ru/pub/omni/catalog/, http://www. solen.info/solar/old_reports, ftp://ftp.swpc.noaa.gov/pub/ warehouse/, https://cdaw.gsfc.nasa.gov/CME_list/, https:// cdaweb.gsfc.nasa.gov/cgi-bin/eval1.cgi, and http://wdc.kugi. kyoto-u.ac.jp/wdc/Sec3.html for access to the relevant data.

Funding

This study was supported by the Ministry of Science and Education (project no. 075-GZ/Ts3569/278).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. I. Kurkin, N. M. Polekh or N. A. Zolotukhina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Arutyunyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurkin, V.I., Polekh, N.M. & Zolotukhina, N.A. Effect of Weak Magnetic Storms on the Propagation of HF Radio Waves. Geomagn. Aeron. 62, 104–115 (2022). https://doi.org/10.1134/S0016793222020116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793222020116

Navigation