Skip to main content
Log in

Features of the Generation of Ultralow-Frequency Electromagnetic Waves in the Earth’s Magnetosphere with Consideration of the Final Plasma Pressure of Hot Particles

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

An analysis of the influence of the plasma pressure of hot anisotropic protons of the Earth’s radiation belt β on the development of cyclotron instability of ULF waves is presented. It is shown that the growth rate γ decreases significantly upon an increase in the Earth’s radiation belt β and that the generation of ULF waves may stop when the values of its damping are reached. The generation of ULF waves requires small values of the Earth’s radiation belt β, which are characteristic of low magnetic activity. This makes it possible to explain the observed fact that low magnetic activity is the most favorable for the appearance of Pc1 pulsations on the Earth’s surface. These features of the generation of ULF waves in the Earth’s magnetosphere, with consideration of the influence of the finite values of the plasma pressure of hot particles in the Earth’s radiation belt β, were not examined in previous works on a similar topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Antonova, E.E., Kirpichev, I.P., and Stepanova, M.V., Plasma pressure distribution in the surrounding the Earth plasma ring and its role in the magnetospheric dynamics, J. Atmos. Sol.-Terr. Phys., 2014, vols. 115–116, pp. 32–40.

    Article  Google Scholar 

  2. Berko, F.M., Cahill, I.J., and Fritz T.A., Jr., Protons as the prime contributors to storm time ring current, J. Geophys. Res., 1975, vol. 80, pp. 3539–3552.

    Google Scholar 

  3. Chappell, C.R., Harris, R.R., and Sharp, G.W., The morphology of the bulge region of the plasmasphere, J. Geophys. Res., 1970, vol. 75, pp. 3848–3861.

    Article  Google Scholar 

  4. Cornwall, J.M., Micropulsations and the outer radiation zone, J. Geophys. Res., 1966, vol. 71, pp. 2185–2199.

    Article  Google Scholar 

  5. Cornwall, J.M. and Schulz, M., Electromagnetic ion-cyclotron instabilities in multicomponent magnetospheric plasmas, J. Geophys. Res., 1971, vol. 76, pp. 7791–7796.

    Article  Google Scholar 

  6. Davis, L.R. and Williamson, J.M., Low-energy trapped protons, Space Rev., 1963, vol. 3, pp. 365–375.

    Google Scholar 

  7. Demekhov, A.G., Recent progress in understanding Pc1 pearl formation, J. Atmos. Sol.-Terr. Phys., 2007, vol. 69, pp. 1609–1622.

    Article  Google Scholar 

  8. Erlandson, R.E. and Ukhorskiy, A.J., Observations of electromagnetic ion cyclotron waves during geomagnetic storms: wave occurrence and pitch angle scattering, J. Geophys. Res., 2001, vol. 106, no. A3, pp. 3883–3895.

    Article  Google Scholar 

  9. Feygin, F.Z. and Yakimenko, V.L., Mechanism of generation and development of “pearls” during cyclotron instability of the outer proton zone, Geomagn. Aeron., 1969, vol. 9, no. 3, pp. 700–705.

    Google Scholar 

  10. Feygin, F.Z. and Yakimenko, V.L., Appearance and development of geomagnetic Pc1 type micropulsations (“pearls”) due to cyclotron instability of proton belt, Ann. Geophys., 1971, vol. 27, pp. 49–55.

    Google Scholar 

  11. Feygin, F.Z., Gokhberg, M.B., and Matveeva, E.T., Comparison of satellite date with the occurrence of pulsations, Ann. Geophys., 1970, vol. 26, pp. 903–906.

    Google Scholar 

  12. Gendrin, R., Lacourly, S., Roux, A., Solomon, J., Feygin, F.Z., Gokhberg, M.B., Troitskaya, V.A., and Yakimenko, V.L., Wave packet propagation in an amplifying medium and its application to the dispersion characteristics and to the generation mechanism of Pc1 events, Planet. Space Sci., 1971, vol. 19, pp. 165–194.

    Article  Google Scholar 

  13. Guglielmi, A.V., MGD volny v okolozemnoi plazme (MHD Waves in the Near-Earth Plasma), Moscow: Nauka, 1979.

  14. Guglielmi, A.V. and Pokhotelov, O.A., Geoelectromagnetic Waves, Bristol: LOP Publishing, 1996.

    Google Scholar 

  15. Guglielmi, A.V. and Potapov, A.S., Frequency-modulated ultra-low-frequency waves in near-Earth space, Phys.-Usp., 2021, vol. 64, no. 5, pp. 452–467.

    Article  Google Scholar 

  16. Kangas, J., Guglielmi, A., and Pokhotelov, O., Morphology and physics of short period magnetic pulsations, Space Sci. Rev., 1998, vol. 83, pp. 435–512.

    Article  Google Scholar 

  17. Kennel, C.F. and Petschek, H.E., Limit on stably trapped particle fluxes, J. Geophys. Res., 1966, vol. 71, pp. 1–28.

    Article  Google Scholar 

  18. Plyasova-Bakunina and T.A., Matveeva, E.T., Relationship between Pc1-type pulsations and magnetic storms, Geomagn. Aeron., 1968, vol. 8, pp. 153–155.

    Google Scholar 

  19. Popova, T.A., Yahnin, A.G., Demekhov, AG., and Chernyaeva, S.A., Generation of EMIC Waves in the magnetosphere and precipitation of energetic protons: Comparison of the data from THEMIS high earth orbiting satellites and POES low Earth orbiting satellites, Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 4, pp. 469–482.

  20. Shafranov, V.D., Voprosy teorii plazmy (Issues in the Plasma Theory), vol. 3, Moscow: Gosatomizdat, 1963, pp. 3–140.

  21. Stepanova, M.V., Antonova, E.E., Bosqued, J.M., and Kovrazhkin, R., Radial plasma pressure gradients in the high latitude magnetosphere as sources of instabilities leading to the substorm onset, Adv. Space Res., 2004, vol. 33, pp. 761–768.

    Article  Google Scholar 

  22. Sticks, T., The Theory of Plasma Waves, New York: McGraw-Hill, 1962; Moscow: Atomizdat., 1965.

  23. Trakhtengerts, V.Yu. and Rycroft, M.G., Svistovye i al’fvenovskie tsiklotronnye mazery v kosmose (Whistler and Alfvén Cyclotron Masers in the Space), Moscow: Fizmatlit, 2011, pp. 278–295.

  24. Tverskoi, B.A., Dinamika radiatsionnykh poyasov Zemli (Dynamics of the Earth’s Radiation Belts), Moscow: Nauka, 1968.

  25. Wentworth, R.C., Enhancement of hydromagnetic emissions after geomagnetic storms, J. Geophys. Res., 1964, vol. 69, pp. 2291–2298.

    Article  Google Scholar 

  26. Yahnin, A.G., Yahnina, T.A., and Frey, H.U., Subauroral proton spots visualize the Pc1 source, J. Geophys. Res., 2007, vol. 112, A10223. https://doi.org/10.1029/2007JA012501

    Article  Google Scholar 

  27. Yahnin, A.G., Yahnina, T.A., Semenova, N.V., Popova, T.A., and Demekhov, A.G., Proton auroras equatorward of the oval as a manifestation of the ion-cyclotron instability in the Earth’s magnetosphere (brief review), Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 5, pp. 577–586. https://doi.org/10.1134/S001679321805016X

  28. Yahnina, T.A., Yahnin, A.G., Kangas, J., and Manninen, J., Proton precipitation related to Pc1 pulsations, Geophys. Res. Lett., 2000, vol. 27, no. 21, pp. 3575–3578.

    Article  Google Scholar 

  29. Yahnina, T.A., Frey, H.U., Businger, T., and Yahnin, A.G., Evidence for subauroral proton flashes on the dayside as the result of the ion cyclotron interaction, J. Geophys. Res., 2008, vol. 113, А07209. https://doi.org/10.1029/2008JA013099

Download references

Funding

The work was carried out within the state task of the Institute of Physics of the Earth of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Z. Feygin or Yu. G. Khabazin.

APPENDIX

APPENDIX

The formulas given here for reference, though simple, can lead to confusion due to their number and interchangeability.

$$\begin{gathered} c_{{\text{A}}}^{2} = {{B_{0}^{2}} \mathord{\left/ {\vphantom {{B_{0}^{2}} {4\pi {{n}_{0}}m,}}} \right. \kern-0em} {4\pi {{n}_{0}}m,}}\,\,\,\,{{v}^{2}} = {{2T} \mathord{\left/ {\vphantom {{2T} {m,}}} \right. \kern-0em} {m,}}\,\,\,\,v_{\parallel }^{2} = {{2{{T}_{\parallel }}} \mathord{\left/ {\vphantom {{2{{T}_{\parallel }}} {m,}}} \right. \kern-0em} {m,}} \\ v_{ \bot }^{2} = {{2{{T}_{ \bot }}} \mathord{\left/ {\vphantom {{2{{T}_{ \bot }}} {m,}}} \right. \kern-0em} {m,}} \\ \beta = {{({{{{n}_{h}}} \mathord{\left/ {\vphantom {{{{n}_{h}}} {{{n}_{0}}}}} \right. \kern-0em} {{{n}_{0}}}}){{v}^{2}}} \mathord{\left/ {\vphantom {{({{{{n}_{h}}} \mathord{\left/ {\vphantom {{{{n}_{h}}} {{{n}_{0}}}}} \right. \kern-0em} {{{n}_{0}}}}){{v}^{2}}} {c_{{\text{A}}}^{2},\,}}} \right. \kern-0em} {c_{{\text{A}}}^{2},\,}}\,\,\,{{\beta }_{ \bot }} = {{({{{{n}_{h}}} \mathord{\left/ {\vphantom {{{{n}_{h}}} {{{n}_{0}}}}} \right. \kern-0em} {{{n}_{0}}}})v_{ \bot }^{2}} \mathord{\left/ {\vphantom {{({{{{n}_{h}}} \mathord{\left/ {\vphantom {{{{n}_{h}}} {{{n}_{0}}}}} \right. \kern-0em} {{{n}_{0}}}})v_{ \bot }^{2}} {c_{{\text{A}}}^{2},}}} \right. \kern-0em} {c_{{\text{A}}}^{2},}} \\ {{\beta }_{\parallel }} = {{({{{{n}_{h}}} \mathord{\left/ {\vphantom {{{{n}_{h}}} {{{n}_{0}}}}} \right. \kern-0em} {{{n}_{0}}}})v_{\parallel }^{2}} \mathord{\left/ {\vphantom {{({{{{n}_{h}}} \mathord{\left/ {\vphantom {{{{n}_{h}}} {{{n}_{0}}}}} \right. \kern-0em} {{{n}_{0}}}})v_{\parallel }^{2}} {c_{{\text{A}}}^{2}}}} \right. \kern-0em} {c_{{\text{A}}}^{2}}}, \\ {{c_{{\text{A}}}^{2}} \mathord{\left/ {\vphantom {{c_{{\text{A}}}^{2}} {{{v}^{2}}}}} \right. \kern-0em} {{{v}^{2}}}} = {{({{{{n}_{h}}} \mathord{\left/ {\vphantom {{{{n}_{h}}} {{{n}_{0}}}}} \right. \kern-0em} {{{n}_{0}}}})} \mathord{\left/ {\vphantom {{({{{{n}_{h}}} \mathord{\left/ {\vphantom {{{{n}_{h}}} {{{n}_{0}}}}} \right. \kern-0em} {{{n}_{0}}}})} {\beta ,}}} \right. \kern-0em} {\beta ,}}\,\,\,\,{{c_{{\text{A}}}^{2}} \mathord{\left/ {\vphantom {{c_{{\text{A}}}^{2}} {v_{ \bot }^{2}}}} \right. \kern-0em} {v_{ \bot }^{2}}} = {{({{{{n}_{h}}} \mathord{\left/ {\vphantom {{{{n}_{h}}} {{{n}_{0}}}}} \right. \kern-0em} {{{n}_{0}}}})} \mathord{\left/ {\vphantom {{({{{{n}_{h}}} \mathord{\left/ {\vphantom {{{{n}_{h}}} {{{n}_{0}}}}} \right. \kern-0em} {{{n}_{0}}}})} {{{\beta }_{ \bot }},}}} \right. \kern-0em} {{{\beta }_{ \bot }},}} \\ {{c_{{\text{A}}}^{2}} \mathord{\left/ {\vphantom {{c_{{\text{A}}}^{2}} {v_{\parallel }^{2}}}} \right. \kern-0em} {v_{\parallel }^{2}}} = ({{{{{{n}_{h}}} \mathord{\left/ {\vphantom {{{{n}_{h}}} {{{n}_{0}}}}} \right. \kern-0em} {{{n}_{0}}}})} \mathord{\left/ {\vphantom {{{{{{n}_{h}}} \mathord{\left/ {\vphantom {{{{n}_{h}}} {{{n}_{0}}}}} \right. \kern-0em} {{{n}_{0}}}})} {{{\beta }_{\parallel }},}}} \right. \kern-0em} {{{\beta }_{\parallel }},}} \\ F = 1 + \frac{1}{2}{{\beta }_{ \bot }}\frac{{(1 - {{{{T}_{\parallel }}} \mathord{\left/ {\vphantom {{{{T}_{\parallel }}} {{{T}_{ \bot }}}}} \right. \kern-0em} {{{T}_{ \bot }}}} - x)}}{{{{{(1 - x)}}^{3}}}} \equiv 1 + \frac{1}{2}{{\beta }_{ \bot }} \\ \times \,\,\frac{{(1 - {{{{\beta }_{\parallel }}} \mathord{\left/ {\vphantom {{{{\beta }_{\parallel }}} {{{\beta }_{ \bot }}}}} \right. \kern-0em} {{{\beta }_{ \bot }}}} - x)}}{{{{{(1 - x)}}^{3}}}}. \\ \end{gathered} $$

Using the dispersion equation for ion-cyclotron waves with allowance for the hot component \({{n}_{h}}\) (3) and substituting \({{k}_{\parallel }}\) in \({{\alpha }^{2}},\) we obtain

$$\begin{gathered} {{\alpha }^{2}} = \frac{{{{{(1 - x)}}^{3}}}}{{{{x}^{2}}}}\frac{{c_{{\text{A}}}^{2}}}{{v_{\parallel }^{2}}}F = \frac{{{{{(1 - x)}}^{3}}}}{{{{x}^{2}}}}\frac{{{{n}_{h}}}}{{{{n}_{0}}}}\frac{F}{{{{\beta }_{\parallel }}}}, \\ {{\alpha }^{2}} = \frac{{{{n}_{h}}}}{{{{n}_{0}}}}\frac{{{{{(1 - x)}}^{3}}}}{{{{x}^{2}}{{\beta }_{\parallel }}}}\left[ {1 + \frac{1}{2}{{\beta }_{ \bot }}\frac{{(1 - {{{{\beta }_{\parallel }}} \mathord{\left/ {\vphantom {{{{\beta }_{\parallel }}} {{{\beta }_{ \bot }}}}} \right. \kern-0em} {{{\beta }_{ \bot }}}} - x)}}{{{{{(1 - x)}}^{3}}}}} \right] \\ = \frac{{{{n}_{h}}}}{{{{n}_{0}}}}\left[ {\frac{{{{{(1 - x)}}^{3}}}}{{{{x}^{2}}{{\beta }_{\parallel }}}} + \frac{1}{{2{{x}^{2}}}}\frac{{{{\beta }_{ \bot }}}}{{{{\beta }_{\parallel }}}}\left( { - \frac{{{{\beta }_{\parallel }}}}{{{{\beta }_{ \bot }}}} + 1 - x} \right)} \right] \\ = \frac{{{{n}_{h}}}}{{{{n}_{0}}}}\left[ {\frac{{{{{(1 - x)}}^{3}}}}{{{{x}^{2}}{{\beta }_{\parallel }}}} + \frac{1}{{2{{x}^{2}}}}\left( {\frac{{{{\beta }_{ \bot }}}}{{{{\beta }_{\parallel }}}} - 1 - x} \right)} \right] \\ = _{{}}^{{}}\frac{{{{n}_{h}}}}{{{{n}_{0}}}}\frac{1}{{{{x}^{2}}{{\beta }_{\parallel }}}}\left[ {{{{(1 - x)}}^{3}} + \frac{1}{2}({{\beta }_{ \bot }} - {{\beta }_{\parallel }} - {{\beta }_{\parallel }}x)} \right], \\ {{\alpha }^{2}} = \frac{{{{n}_{h}}}}{{{{n}_{0}}}}\frac{1}{{{{x}^{2}}}}\left[ {\frac{{{{{(1 - x)}}^{3}}}}{{{{\beta }_{\parallel }}}} + \frac{1}{2}\left( {\frac{{{{\beta }_{ \bot }}}}{{{{\beta }_{\parallel }}}} - 1 - x} \right)} \right] \\ = \frac{{{{n}_{h}}}}{{{{n}_{0}}}}\frac{1}{{{{x}^{2}}}}\left[ {\frac{{{{{(1 - x)}}^{3}}B_{0}^{2}}}{{8\pi {{n}_{h}}{{T}_{\parallel }}}} + \frac{1}{2}\left( {\frac{{{{\beta }_{ \bot }}}}{{{{\beta }_{\parallel }}}} - 1 - x} \right)} \right] \\ = \frac{{{{n}_{h}}}}{{{{n}_{0}}}}\frac{1}{{{{x}^{2}}}}\left[ {\frac{{{{{(1 - x)}}^{3}}B_{0}^{2}}}{{4\pi {{n}_{0}}\frac{{{{n}_{h}}}}{{{{n}_{0}}}}mv_{\parallel }^{2}}} + \frac{1}{2}(A - x)} \right] \\ = \frac{{{{n}_{h}}}}{{{{n}_{0}}}}\frac{1}{{{{x}^{2}}}}\left[ {\frac{{{{{(1 - x)}}^{3}}c_{{\text{A}}}^{2}}}{{\frac{{{{n}_{h}}}}{{{{n}_{0}}}}v_{\parallel }^{2}}} + \frac{1}{2}(A - x)} \right], \\ \end{gathered} $$
(6)
$$\begin{gathered} \beta = \frac{{{{n}_{h}}}}{{{{n}_{0}}}}\frac{{{{v}^{2}}}}{{c_{{\text{A}}}^{2}}} = \frac{{{{n}_{h}}}}{{{{n}_{0}}}}\frac{{v_{ \bot }^{2} + v_{\parallel }^{2}}}{{c_{{\text{A}}}^{2}}} = \frac{{{{n}_{h}}}}{{{{n}_{0}}}}\frac{{v_{\parallel }^{2}}}{{c_{{\text{A}}}^{2}}}\left( {\frac{{{{T}_{ \bot }}}}{{{{T}_{\parallel }}}} + 1} \right) \\ = \frac{{{{n}_{h}}}}{{{{n}_{0}}}}\frac{{v_{\parallel }^{2}}}{{c_{{\text{A}}}^{2}}}(A + 2). \\ \end{gathered} $$
(7)

where \(\frac{{c_{A}^{2}}}{{v_{\parallel }^{2}}} = \frac{{{{n}_{h}}}}{{{{n}_{0}}}}\frac{{(A + 2)}}{\beta }.\)

Lastly, we get the expressions \({{\alpha }^{2}}\) across \(\beta \) and through \({{c_{{\text{A}}}^{2}} \mathord{\left/ {\vphantom {{c_{{\text{A}}}^{2}} {v_{\parallel }^{2}}}} \right. \kern-0em} {v_{\parallel }^{2}}}{\text{:}}\)

$${{\alpha }^{2}} = \frac{{{{n}_{h}}}}{{{{n}_{0}}}}\frac{1}{{{{x}^{2}}}}\left[ {\frac{{{{{(1 - x)}}^{3}}(A + 2)}}{\beta } + \frac{1}{2}(A - x)} \right],$$
(8)
$${{\alpha }^{2}} = \frac{{{{{(1 - x)}}^{3}}}}{{{{x}^{2}}}}\frac{{c_{{\text{A}}}^{2}}}{{v_{\parallel }^{2}}} + \frac{{{{n}_{h}}}}{{{{n}_{0}}}}\frac{1}{{2{{x}^{2}}}}(A - x).$$
(9)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feygin, F.Z., Khabazin, Y.G. Features of the Generation of Ultralow-Frequency Electromagnetic Waves in the Earth’s Magnetosphere with Consideration of the Final Plasma Pressure of Hot Particles. Geomagn. Aeron. 62, 50–57 (2022). https://doi.org/10.1134/S0016793222020062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793222020062

Navigation