Skip to main content
Log in

Characteristics of Low-Frequency Radiation Excited by the Impact of an Oscillating, High-Frequency Beam on the Ionosphere According to In Situ Measurements

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The results of experimental studies of the characteristics of low-frequency (LF) radiation excited by the impact of two frequency-shifted, unmodulated pump waves emitted by spatially separated antenna subarrays of the EISCAT high-latitude heating facility on the Earth’s ionosphere are presented. In situ measurements of the characteristics of the generated LF signals have been carried out at altitudes of ∼660 km with the onboard equipment of the DEMETER microsatellite. The spatial and amplitude characteristics of LF radiation are determined. It is shown that the detected values of the electric-field strength of the excited radiation (~3 µV/m in the daytime and ~50 µV/m in the nighttime) under this generation scheme, even if the combination of impact parameters is far from optimal, are comparable to the levels of signals during heating with powerful, amplitude-modulated, high-frequency radiation, which offers the potential to significantly increase the efficiency of LF wave radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Barr, R. and Stubbe, P., ELF and VLF wave generation by HF heating: A comparison of AM and CW techniques, J. Atmos. Terr. Phys., 1997, vol. 59, no. 18, pp. 2265–2279. https://doi.org/10.1016/S1364-6826(96)00121-6

    Article  Google Scholar 

  2. Barr, R., Rietveld, M.T., Stubbe, P., and Kopka, H., Ionospheric heater beam scanning: A mobile source of ELF radiation, Radio Sci., 1987, vol. 22, no. 6, pp. 1073–1083. https://doi.org/10.1029/RS022i006p01073

    Article  Google Scholar 

  3. Bespalov, P.A. and Trakhtengerts, V.Yu., Al’fvenovskie mazery (Alfvén Masers), Gor’kii: IPF AN SSSR, 1986.

  4. Blagoveshchenskaya, N.F., Geofizicheskie effekty aktivnykh vozdeistvii v okolozemnom kosmicheskom prostranstve (Geophysical Effects of Active Influences in the Near-Earth Space), St. Petersburg: Gidrometeoizdat, 2001.

  5. Cohen, M.B., Moore, R.C., Golkowski, M., and Lehtinen, N.G., ELF/VLF wave generation from the beating of two HF ionospheric heating sources, J. Geophys. Res., 2012, vol. 117, no. A12, pp. 1–8. https://doi.org/10.1029/2012JA018140

    Article  Google Scholar 

  6. Cussac, T., Clair, M.-A., Ultre-Guerard, P., Buisson, F., Lassalle-Balier, G., Ledu, M., Elisabelar, C., Passot, X., and Rey, N., The Demeter microsatellite and ground segment, Planet. Space Sci., 2006, vol. 54, no. 5, pp. 413–427. https://doi.org/10.1016/j.pss.2005.10.013

    Article  Google Scholar 

  7. Getmantsev, G.G., Zuikov, N.A., Kotik, D.S., Mironenko, L.F., Mityakov, N.A., Rapoport, V.A., Sazonov, Yu.A., Trakhtengerts, V.Yu., and Eidman, V.Ya., Combination frequencies in the interaction between high-power short-wave radiation and ionospheric plasma, JETP Lett., 1974, vol. 20, no. 4, pp. 101–102.

    Google Scholar 

  8. Gurevich, A.V., Nonlinear effects in the ionosphere, Phys.-Usp., 2007, vol. 50, no. 11, pp. 1091–1122. https://doi.org/10.1070/PU2007v050n11ABEH006212

    Article  Google Scholar 

  9. Gurevich, A.V. and Shvartsburg, A.B., Nelineinaya teoriya rasprostraneniya radiovoln v ionosphere (Nonlinear Theory of Radiowave Propagation in the Ionosphere), Moscow: Nauka, 1973.

  10. Inan, U.S., Bell, T.F., Bortnik, J., and Albert, J.M., Controlled precipitation of radiation belt electrons, J. Geophys. Res., 2003, vol. 108, no. A5, pp. 1–6. https://doi.org/10.1029/2002JA009580

    Article  Google Scholar 

  11. James, H.G., Dowden, R.L., Rietveld, M.T., Stubbe, P., and Kopka, H., Simultaneous observations of ELF waves from an artificially modulated auroral electrojet in space and on the ground, J. Geophys. Res., 1984, vol. 89, no. A3, pp. 1655–1666. https://doi.org/10.1029/JA089iA03p01655

    Article  Google Scholar 

  12. Jin, G., Spasojevic, M., and Inan, U.S., Relationship between electrojet current strength and ELF signal intensity in modulated heating experiments, J. Geophys. Res., 2009, vol. 114, no. A08, pp. 1–9. https://doi.org/10.1029/2009JA014122.

  13. Kapustin, I.N., Pertsovskii, R.A., Vasil’ev, A.N., Smirnov, V.S., Raspopov, O.M., Solov’eva, L.E., Ul’yanchenko, A.A., Arykov, A.A., and Galakhova, N.V., Generation of radiation at combination frequencies in the region of the auroral electric jet, JETP Lett., 1977, vol. 25, no. 5, pp. 228–231.

    Google Scholar 

  14. Kotik, D.S., Mironenko, L.F., Mityakov, S.N., Rapoport, V.O., Solynin, V.A., and Tamoikin, V.V., Possibility of the formation of a superlight Cherenkov radiation source on the basis of the Getmantsev effect, in Tr. Mezhdunarodnogo simpoziuma “Modifikatsiya ionosfery moshchnym radioizlucheniem” (Proceedings of the International Symposium “Modification of the Ionosphere by Powerful Radio Emission”), Lobachevskii, L.A., Ed., Moscow: IZMIRAN, 1986, pp. 91–92.

  15. Kovrazhkin, R.A., Mogilevskii, M.M., Boske, Zh.M., Gal’perin, Yu.I., Dzhordzhio, N.V., Lisakov, Shch.E., Molchanov, O.A., and Rem, A., Observation of particle precipitation from the ring-current zone stimulated by a powerful ground-based VLF transmitter, JETP Lett., 1983, vol. 38, no. 7, pp. 397–400. 1983.

  16. Kuo, S.P., Snyder, A., Kossey, P., Chang, C.-L., and Labenski, J., Beating HF waves to generate VLF waves in the ionosphere, J. Geophys. Res., 2012, vol. 117, no. A03, pp. 1–9. https://doi.org/10.1029/2011JA017076

    Article  Google Scholar 

  17. Lefeuvre, F., Rauch, J.L., Dee, V.I., Titova, E.E., Yurov, V.E., Molchanov, O.A., Mogilevsky, M.M., Maltseva, O.A., Zinin, L.V., and Kopka, H., Detection from AUREOL-3 of the modulation of auroral electrojet by HF-heating from ELF signals in the upper ionosphere above Tromsø (Norway), in Results of the ARCAD 3 Project and of Recent Programs in Magnetospheric and Ionospheric Physics, CNES, Toulouse, France: Cepedues, 1985, pp. 609–619.

    Google Scholar 

  18. Mironenko, L.F., Rapoport, V.O., Kotik, D.S., and Mityakov, S.N., Radiation of superluminal irregularities artificially created in the lower ionosphere, Radiophys. Quantum. Electron., 1998, vol. 41, no. 3, pp. 196–205.

    Article  Google Scholar 

  19. Mizun, Yu.G., Polyarnaya ionosfera (The Polar Ionosphere), Leningrad: Nauka, 1980.

    Google Scholar 

  20. Moore, R.C., Inan, U.S., Bell, T.F., and Kennedy, E.J., ELF waves generated by modulated HF heating of the auroral electrojet and observed at a ground distance of ~4400 km, J. Geophys. Res., 2007, vol. 112, no. A05, pp. 1–7. https://doi.org/10.1029/2006JA012063

    Article  Google Scholar 

  21. Moore, R.C., Fujimaru, S., Cohen, M., Golkowski, M., and McCarrick, M.J., On the altitude of the ELF/VLF source region generated during “beat-wave” HF heating experiments, Geophys. Res. Lett., 2012, vol. 39, no. L18, pp. 1–5. https://doi.org/10.1029/2012GL053210

    Article  Google Scholar 

  22. Piddyachiy, D., Propagation of ELF waves generated by an HF ionospheric heater in the Earth’s plasma environment, Ph. D. Dissertation, Stanford University, 2012. https://vlfstanford.ku.edu.tr/wp-content/uploads/2012/ 12/piddyachiy_thesis_online_1-sided.pdf.

  23. Rietveld, M.T., Mauelshagen, H.-P., Stubbe, P., Kopka, H., and Nielsen, E., The characteristics of ionospheric heating-produced ELF/VLF waves over 32 hours, J. Geophys. Res., 1987, vol. 92, no. A8, pp. 8707–8722. https://doi.org/10.1029/JA092iA08p08707

    Article  Google Scholar 

  24. Rietveld, M.T., Kohl, H., Kopka, H., and Stubbe, P., Introduction to ionospheric heating at Tromsø – I. Experimental overview, J. Atmos. Terr. Phys., 1993, vol. 55, nos. 4–5, pp. 577–599. https://doi.org/10.1016/0021-9169(93)90007-L

    Article  Google Scholar 

  25. Robinson, T.R., The heating of the high latitude ionosphere by high power radio waves, Phys. Rep., 1989, vol. 179, nos. 2–3, pp. 79–209. https://doi.org/10.1016/0370-1573(89)90005-7

    Article  Google Scholar 

  26. Stubbe, P., Kopka, H., Rietveld, M.T., and Dowden, R.L., ELF and VLF wave generation by modulated HF heating of the current carrying lower ionosphere, J. Atmos. Terr. Phys., 1982, vol. 44, no. 12, pp. 1123–1131. https://doi.org/10.1016/0021-9169(82)90023-X

    Article  Google Scholar 

  27. Villaseñor, J., Wong, A.Y., Song, B., Pau, J., McCarrick, M., and Sentman, D., Comparison of ELF/VLF generation modes in the ionosphere by the HIPAS heater array, Radio Sci., 1996, vol. 31, no. 1, pp. 211–226. https://doi.org/10.1029/95RS01993

    Article  Google Scholar 

  28. Werner, D.H. and Ferraro, A.J., Steerable ELF/VLF radiation produced by an array of ionospheric dipoles generated from HF heating, IEEE Trans. Antennas Propag., 1987, vol. 35, no. 9, pp. 1022–1030. https://doi.org/10.1109/TAP.1987.1144214

    Article  Google Scholar 

Download references

5. ACKNOWLEDGMENTS

We are grateful to N.F. Blagoveshchenskaya for the assistance with the research programs at the EISCAT heating facility and to V.L. Frolov for the access to the initial data and for the useful discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Belov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by O. Pismenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belov, A.S. Characteristics of Low-Frequency Radiation Excited by the Impact of an Oscillating, High-Frequency Beam on the Ionosphere According to In Situ Measurements. Geomagn. Aeron. 62, 116–124 (2022). https://doi.org/10.1134/S0016793222020037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793222020037

Navigation