Skip to main content
Log in

Manifestation of Solar Activity Effects in Lidar Observations of Stratospheric Aerosol

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

An analysis of lidar observations at wavelengths of 532 and 355 nm conducted in the layer 13–23 km over Obninsk (55° N) from 2014 to 2018 has revealed the effect of solar activity factors on stratospheric aerosol. The time interval from 2016 to 2018 is characterized by a decrease in aerosol backscattering by a few percent 0 to 2 days after the commencement of Forbush decreases in the galactic cosmic ray flux. In 2014–2017, solar proton events with a delay of 3–8 days are followed by an increase of 20% to 70% in aerosol backscattering. This effect has been shown to occur predominantly during the transport of stratospheric air to the observation point from the region of high latitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Air Resources Laboratory, Transport and Dispersion Modeling, HYSPLIT. http://ready.arl.noaa.gov/HYSPLIT_ traj.php. Accessed January 20, 2021.

  2. Bian, J., Li, D., Bai, Z., Li, Q., Lyu, D., and Zhou, X., Transport of Asian surface pollutants to the global stratosphere from the Tibetan Plateau region during the Asian summer monsoon, Natl. Sci. Rev., 2020, vol. 7, pp. 516–533. https://doi.org/10.1093/nsr/nwaa005

    Article  Google Scholar 

  3. Catalog of Forbush effects and interplanetary disturbances. http://spaceweather.izmiran.ru/rus/fds2018.html.

  4. Hamill, P., Jensen, E.J., Russell, P.B., and Bauman, J.J., The life cycle of stratospheric aerosol particles, Bull. Am. Meteorol. Soc., 1997, vol. 78, no. 7, pp. 1395–1410.

    Article  Google Scholar 

  5. Harrison, R.G. and Carslaw, K.S., Ion-aerosol-cloud processes in the lower atmosphere, Rev. Geophys., 2003, vol. 41, no. 3, 1012. https://doi.org/10.1029/2002RG000114

    Article  Google Scholar 

  6. Hermann, M., Heintzenberg, J., Wiedensohler, A., Zahn, A., Heinrich, G., and Brenninkmeijer, C.A.M., Meridional distributions of aerosol particle number concentrations in the upper troposphere and lower stratosphere obtained by Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container (CARIBIC) flights, J. Geophys. Res., 2003, vol. 108, no. D3, 4114. https://doi.org/10.1029/2001JD001077

    Article  Google Scholar 

  7. Hommel, R., Timmreck, C. and Graf, H.F., The global middle-atmosphere aerosol model MAECHAM5-SAM2: Comparison with satellite and in-situ observations, Geosci. Model Dev., 2011, vol. 4, no. 3, pp. 809–834. https://www.geosci-model-dev.net/4/809/2011. https://doi.org/10.5194/gmd-4-809-2011

    Article  Google Scholar 

  8. Ivanov, V.N., Zubachev, D.S., Korshunov, V.A., and Sakhibgareev, D.G., Network lidar AK-3 for sounding of the middle atmosphere: design, measurement methods, and results of investigations, Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, 2020, no. 598, pp. 155–187.

  9. Kirkby, J., Curtius, J., Almeida, J., et al., Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation, Nature, 2011, vol. 476, pp. 429–433.

    Article  Google Scholar 

  10. Korshunov, V.A., Background stratospheric aerosol and its radiation characteristics according to 2014–2017 lidar observations in Obninsk, Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, 2018, no. 589, pp. 50–73.

  11. Korshunov, V.A. and Zubachev, D.S., Determination of stratospheric aerosol parameters from two-wavelength lidar sensing data, Izv., Atmos. Ocean. Phys., 2013, vol. 49, no. 2, pp. 176–186.

    Article  Google Scholar 

  12. Lee, S.-H., Reeves, J.M., Wilson, J.C., Hunton, D.E., Viggiano, A.A., Miller, T.M., Ballenthin, J.O., and Lait, L.R., Particle formation by ion nucleation in the upper troposphere and lower stratosphere, Science, 2003, vol. 301, 1886. https://doi.org/10.1126/science.1087236

    Article  Google Scholar 

  13. Logachev, Yu.I., Bazilevskaya, G.A., Daibog, E.I., Ginzburg, E.A., Ishkov, V.N., Lazutin, L.L., Nguyen, M.D., Surova, G.M., Vlasova, N.A., and Yakovchuk, O.S., List of solar proton events in the 24 cycle of solar activity (2009–2019), ESDB repository, GC RAS, Moscow, 2019. https://doi.org/10.2205/ESDB-SAD-P-007.

  14. Lovejoy, E.R., Curtius, J., and Froyd, K.D., Atmospheric ion-induced nucleation of sulfuric acid and water, J. Geophys. Res., 2004, vol. 109, D08204. https://doi.org/10.1029/2003JD004460

    Article  Google Scholar 

  15. Marichev, V.N., Bogdanov, V.V., Zhivet’ev, I.V., and Shevtsov, B.M., Effect of geomagnetic disturbances on the formation of aerosol layers in the stratosphere, Geomagn. Aeron. (Engl. Transl.), 2004, vol. 44, no. 6, pp. 779–787.

  16. Mironova, I.A. and Usoskin, I.G., Possible effect of extreme solar energetic particle events of September–October 1989 on polar stratospheric aerosols: A case study, Atmos. Chem. Phys., 2013, vol. 13, pp. 8543–8550.

    Article  Google Scholar 

  17. Mironova, I.A. and Usoskin, I.G., Possible effect of strong solar energetic particle events on polar stratospheric aerosol: A summary of observational results, Environ. Res. Lett., 2014, vol. 9, no. 1, pp. 1–8.

    Article  Google Scholar 

  18. Mironova, I.A., Usoskin, I.G., Kovaltsov, G.A., and Petelina, S.V., Possible effect of extreme solar energetic particle event of 20 January 2005 on polar stratospheric aerosols: Direct observational evidence, Atmos. Chem. Phys., 2012, vol. 12, pp. 769–778.

    Article  Google Scholar 

  19. Mironova, I.A., Aplin, K.L., Arnold, F., Bazilevskaya, G.A., Harrison, R.G., Krivolutsky, A.A., Nicol, K.A., Rozanov, E.V., Turunen, E., and Usoskin, I.G., Energetic particle influence on the Earth’s atmosphere, Space Sci. Rev., 2015, vol. 194, pp. 1–96. https://doi.org/10.1007/s11214-015-0185-4

    Article  Google Scholar 

  20. Mohnen, V.A., Stratospheric ion and aerosol chemistry and possible links with cirrus cloud microphysics: A critical assessment, J. Atmos. Sci., 1990, vol. 47, no. 16, pp. 1933–1948.

    Article  Google Scholar 

  21. Rozanov, E., Calisto, M., Egorova, T., Peter, T., and Schmutz, W., Influence of the precipitating energetic particles on atmospheric chemistry and climate, Surv. Geophys., 2012, vol. 33, pp. 483–501. https://doi.org/10.1007/s10712-012-9192-0

    Article  Google Scholar 

  22. Sheng, J.-X., Weisenstein, D.K., Luo, B.-P., Rozanov, E., Stenke, A., Anet, J., Bingemer, H., and Peter, T., Global atmospheric sulfur budget under volcanically quiescent conditions: Aerosol–chemistry–climate model predictions and validation, J. Geophys. Res.: Atmos., 2015, vol. 120, pp. 256–276. https://doi.org/10.1002/2014JD021985

    Article  Google Scholar 

  23. Shumilov, O.I., Kasatkina, E.A., Henriksen, K., and Vashenyuk, E.V., Enhancement of stratospheric aerosols after solar proton event, Ann. Geophys., 1996, vol. 14, no. 11, pp. 1119–1123.

    Article  Google Scholar 

  24. Svensmark, H., Bondo, T., and Svensmark, J., Cosmic ray decreases affect atmospheric aerosols and clouds, Geophys. Res. Lett., 2009, vol. 36, L15101. https://doi.org/10.1029/GL038429

    Article  Google Scholar 

  25. Usoskin, I.G., Kovaltsov, G.A., Mironova, I.A., Tylka, A.J., and Dietrich, W.F., Ionization effect of solar particle GLE events in low and middle atmosphere, Atmos. Chem. Phys., 2011, vol. 11, pp. 1979–1988. https://doi.org/10.5194/acp-11-1979-2011

    Article  Google Scholar 

  26. Vanhellemont, F., Fussen, D., and Bingen, C., Cosmic rays and stratospheric aerosols: Evidence for a connection?, Geophys. Res. Lett., 2002, vol. 29, no. 15, 1715. https://doi.org/10.1029/2002gl015567

    Article  Google Scholar 

  27. Vehkamäki, H., Kulmala, M., Napari, I., Lehtinen, K.E.J., Timmreck, C., Noppel, M., and Laaksonen, A., An improved parameterization for sulfuric acid–water nucleation rates for tropospheric and stratospheric conditions, J. Geophys. Res., 2002, vol. 107, no. D22, 4622. https://doi.org/10.1029/2002JD002184

    Article  Google Scholar 

  28. Veretenenko, S.V., Ivlev, L.S., and Ul’ev, V.A., Stratospheric aerosol variations during solar proton events of January 2005 according to 4GOMOS/ENVISAT instrument data, Probl. Arkt. Antarkt., 2008, no. 3, pp. 126–130.

  29. Yu, F., From molecular clusters to nanoparticles: Second-generation ion-mediated nucleation model, Atmos. Chem. Phys., 2006, vol. 6, pp. 5193–5211.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Korshunov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Arutyunyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korshunov, V.A., Zubachev, D.S. Manifestation of Solar Activity Effects in Lidar Observations of Stratospheric Aerosol. Geomagn. Aeron. 61 (Suppl 1), S67–S74 (2021). https://doi.org/10.1134/S001679322201011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001679322201011X

Navigation