Skip to main content
Log in

Analyzing the Variation of Lyapunov Exponents of the Time Derivatives of the Horizontal Geomagnetic Field during the Geomagnetic Storm

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The geomagnetic disturbance associated with coronal mass ejections (CMEs) of September 8, 2017 was evaluated using the time derivatives of the horizontal geomagnetic field which are proxy to geomagnetically induced current (GIC) risks at different latitudes. The time derivatives of the horizontal geomagnetic (dH/dt) were acquired from data of the INTERMAGNET (International Real-Time Magnetic Observatory Network). The Lyapunov exponent (LE), was evaluated using deterministic methods of nonlinear dynamics techniques based on estimated time delay (τ) and embedding dimension (m) from average mutual information (AMI) and false nearest neighbor (FNN) algorithms respectively. The positive values of the Lyapunov exponent for stations with labels ABK, HAD, HBK, HER, LER, LYC, MBO, NUR, SOD,TAM and UPS are 0.097, 0.053, 0.077, 0.048, 0.067, 0.069, 0.00001, 0.069, 0.085, 0.050 and 0.071 respectively, is a strong indicator of the presence of chaos in the dynamics of the associated geomagnetic disturbance. The highest value of Lyapunov exponents is observed at ABK while Mbour exhibits the lowest value of Lyapunov exponents. Observed variations in LE confirm a strong impact on the high latitudes, which implies that the intensity and the ring current distribution, auroral electrojets, and field-aligned currents (FACs) have an effect on the time derivatives of the horizontal component of the geomagnetic fields. These results showed that chaotic features are clearly present in the time derivatives of the horizontal geomagnetic field and the techniques of nonlinear dynamics can therefore be employed to understand and predict the dH/dt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 6.
Fig. 6.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Abarbanel, H.D.I. and Lali, U., Nonlinear dynamics of the Great Salt Lake: System identification and perdition, Clim. Dyn., 1996, vol. 12, pp. 287–297.

    Article  Google Scholar 

  2. Barbosa, C.S., Caraballo, R., Alves, L.R., et al., The Tsallis statistical distribution applied to geomagnetically induced currents, Space Weather, 2017, vol. 15, pp. 1094–1101.https://doi.org/10.1002/2017SW001631

    Article  Google Scholar 

  3. Boteler, D., Pirjola, R., and Nevanlinna, H., The effect of geomagnetic disturbance on electrical systems at the Earth’s surface, Adv. Space Res., 1998, vol. 22, pp. 17–27.

    Article  Google Scholar 

  4. Falayi, E.O., Ogunmodimu, O., Bolaji, O.S., et al., Investigation of geomagnetic induced current at high latitude during the storm-time variation, NRIAG J. Astron. Geophys., 2017, vol. 6, pp. 131–140.

    Article  Google Scholar 

  5. Falayi, E.O. and Adebesin, B.O., and Bolaji, O.S., The impact of coronal mass ejection on the horizontal geomagnetic fields and the induced geoelectric fields, Adv. Space Res., 2018, vol. 61, pp. 985–1003.

    Article  Google Scholar 

  6. Fathy, I., Amory-Mazaudier, C., Fathy, A., et al., Ionospheric disturbance dynamo associated to a coronal hole: Case study of 5–10 April 2020, J. Geophys. Res.: Space Phys., 2014, vol. 119, pp. 4120–4133. https://doi.org/10.1002/2013JA019510

    Article  Google Scholar 

  7. Fraser, A.M. and Swinney, H.L., Independent coordinates for storage attractors from mutual information, Phys. Rev. A, 1986, vol. 33, pp. 1134–1141.

    Article  Google Scholar 

  8. Gholipour, A., Lucas, C., Araabi, B.N., et al., Extracting the main patterns of natural time series for long-term neurofuzzy prediction, J. Neural Comput. Appl., 2007, vol. 16, nos. 4–5, pp. 383–393.

    Article  Google Scholar 

  9. Hegger, R., Kantz, H., and Shrieber, T., Practical implementation of nonlinear time series method, Chaos, 1999, vol. 9, pp. 413–430.

    Article  Google Scholar 

  10. INTERMAGNET: International Real-Time Magnetic Observatory Network, 2019. http://www.intermagnet.org.

  11. Kantz, H. and Schreiber, T., Nonlinear Time Series Analysis, Cambridge: Cambridge Univ. Press, 2003.

    Book  Google Scholar 

  12. Kennel, M.B., Brown, R., and Abarbanel, H.D.I., Determining minimum embedding dimension using a geometrical construction, Phys. Rev. A, 1992, vol. 45, pp. 3403–3411.

    Article  Google Scholar 

  13. Kumar, C.V.A. and Eapen, S., Linear scaling and periodicity on the measures of global and local scale complexities of total electron content dynamics, Geophys. Res. Lett., 2013, vol. 118, pp. 2583–2592. https://doi.org/10.1002/jgra.50133

    Article  Google Scholar 

  14. Marwan, N., Romano, M.C., Thiel, M., and Kurths, J., Recurrence plots for the analysis of complex systems, Phys Rep., 2017, vol. 438, pp. 237–329. https://doi.org/10.1016/j.physrep.2006.11.001

    Article  Google Scholar 

  15. Mirmomeni, M., Lucas, C., Araabi, B.N., and Shafiee, M., Forecasting sunspot numbers with the aid of fuzzy descriptor models, Space Weather J. Res. Appl., 2007, vol. 5, no. 8. https://doi.org/10.1029/2006SW000289

  16. NASA Interface to produce plots, listings or output files from OMNI 2, 2019. http://omniweb.gsfc.nasa.gov/ form/dx1.html.

  17. Ngwira, C.M., Pulkkinen, A., Wilder, F.D., and Crowley, G., Extended study of extreme geoelectric field event scenarios for geomagnetically induced current applications, Space Weather, 2013, vol. 11, pp. 121–131. https://doi.org/10.1002/swe.20021

    Article  Google Scholar 

  18. Ogunsua, B.O., Laoye, J.A., Fuwape, I.A., and Rabiu, A.B., The comparative study of chaoticity and dynamical complexity of the low-latitude ionosphere over Nigeria, during quiet and disturbed days, Nonlinear Processes Geophys., 2014, vol. 21, pp. 27–142. https://doi.org/10.5194/npg-21-127-2014

    Article  Google Scholar 

  19. Oludehinwa, I.A., Olusola, O.I., Bolaji, O.S., and Odeyemi, O.O., Investigation of nonlinearity effect during storm time disturbance, Adv. Space Res., 2018, vol. 62, no. 2, pp. 440–456.

    Article  Google Scholar 

  20. Pirjola, P., Geomagnetically induced currents during magnetic storms, IEEE Trans. Plasma Sci., 2000, vol. 28, no. 6, pp. 1867–1873.

    Article  Google Scholar 

  21. Pirjola, P., Review on the calculation of the surface electric and magnetic fields and geomagnetically induced currents in ground based technological systems, Surv. Geophys., 2002, vol. 23, pp. 71–90.

    Article  Google Scholar 

  22. Pulkkinen, A., Amm, O., and Viljanen, A., Ionospheric equivalent current distributions determined with the method of elementary current systems, J. Geophys. Res., 2003, vol. 108. https://doi.org/10.1029/2001JA005085

  23. Rosenstein, M.T., Collins, J.J., and DeLuca, C.J.A., A practical method for calculating largest Lyapunov exponents from small data sets, Phys. D, 1993, vol. 65, pp. 117–134.

    Article  Google Scholar 

  24. Shaw, R., Strange attractors, chaotic behavior, and information flow, Z. Naturforsch., 1981, vol. 36A, pp. 80–112.

    Article  Google Scholar 

  25. Stefanski, A., Estimation of the largest Lyapunov exponent in systems with impacts, Chaos, Solitons Fractals, 2003, vol. 11, pp. 2443–2451.

    Article  Google Scholar 

  26. Unnikrishnan, K. and Ravindran, S., A study on chaotic behavior of equatorial/low latitude ionosphere over Indian subcontinent, using GPS TEC time series, J. Atmos. Sol.-Terr. Phys., 2010, vol. 72, nos. 14–15, pp. 1080–1089.

    Article  Google Scholar 

  27. Unnikrishnan, K., Saito, A., and Fukao, S., Differences in magnetic storm and quiet ionospheric deterministic chaotic behavior: GPS TEC Analyses, J. Geophys. Res., 2003, vol. 111, A06304. https://doi.org/10.1029/2005JA011311

    Article  Google Scholar 

  28. Viljanen, A., Amm, O., and Pirjola, R., Modelling geomagnetically induced current during different ionospheric situations, J. Geophys. Res., 1999, vol. 104, pp. 28059–28072.

    Article  Google Scholar 

  29. Viljanen, A., Nevanlinna, H., Pajunpaa, K., and Pulkkinen, A., Time derivatives of the horizontal geomagnetic field as an activity indicator, Ann. Geophys., 2001, vol. 19, pp. 1107–1118.

    Article  Google Scholar 

  30. Watermann, J. and Gleisner, H., Geomagnetic variations and their time derivatives during geomagnetic storms at different levels of intensity, Acta Geophys., 2009, vol. 57, no. 1, pp. 197–208. https://doi.org/10.2478/s11600-008-0045-7

    Article  Google Scholar 

  31. Weigel, R.S., Klimas, A., and Vassiliadis, D., Solar wind coupling and predictability of ground magnetic field and their time derivatives, J. Geophys. Res., 2003, vol. 108, no. A7, 1298. https://doi.org/10.1029/2002JA009627

    Article  Google Scholar 

  32. Wintoft, P., Study of the solar wind coupling to the time difference horizontal geomagnetic field, Ann. Geophys., 2005, vol. 23, pp. 1949–1957.

    Article  Google Scholar 

  33. Wolf, A., Swift, J.B., Swinney, H.L., and Vastano, J.A., Determining Lyapunov exponents from a time series, Phys. D, 1985, vol. 16, pp. 285–317.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to acknowledge INTERMAGNET for the provision of geomagnetic field data (http://www.intermagnet.org/data) and OMINIWEB (http://www.omniweb.gsfc.nasa.gov) staff for providing Vx, Bz, SYM-H, Fp, AU, and AL indices data for the study of nonlinear time series of the time derivatives of the horizontal geomagnetic field during storm time variation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. O. Falayi, A. S. Ajose, T. O. Roy-Layinde or A. T. Adewole.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falayi, E.O., Ajose, A.S., Roy-Layinde, T.O. et al. Analyzing the Variation of Lyapunov Exponents of the Time Derivatives of the Horizontal Geomagnetic Field during the Geomagnetic Storm. Geomagn. Aeron. 61, 1221–1233 (2021). https://doi.org/10.1134/S0016793221080065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793221080065

Keywords:

Navigation