Skip to main content
Log in

Luminescence of Molecular Nitrogen and Molecular Oxygen in the Earth’s Middle Atmosphere During the Precipitation of High-Energy Protons

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The intensity profiles of the bands of the first and second positive N2 systems and the infrared atmospheric and atmospheric O2 systems were calculated based on models of the electronic kinetics of triplet states of molecular nitrogen and singlet states of molecular oxygen for the middle Earth’s atmosphere in the case of the precipitation of high-energy protons into the Earth’s atmosphere during the ground-level enhancement (GLE) (no. 69) on January 20, 2005. Calculations have shown that there is a significant contribution from the quenching of the B3Πg state during molecular collisions over nearly all of the considered altitude range of 20–80 km. The kinetics of O2 singlet states at altitudes of the middle atmosphere during proton precipitation is considered. Both direct excitation by high-energy particles and intermolecular processes of electron-excitation transfer are taken into account. It is shown that the quenching of the \({{{\text{b}}}^{1}}\Sigma _{{\text{g}}}^{ + }\) state during inelastic molecular collisions leads to a significant decrease in the intensities of the bands of the atmospheric system at the heights of the middle atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Agostinelli, S., Allisonas, J., Amako, K., et al., Geant4—a simulation toolkit, Nucl. Instrum. Methods Phys. Res., 2003, vol. 506A, pp. 250–303.

    Article  Google Scholar 

  2. Artamonov, A.A., Mishev, A.L., and Usoskin, I.G., Atmospheric ionization induced by precipitating electrons: Comparison of CRAC: EPII model with a parametrization model, J. Atmos. Sol.-Terr. Phys., 2016, vol. 149, pp. 161–166.

    Article  Google Scholar 

  3. Bates, D.R., Oxygen band system transition arrays, Planet. Space Sci., 1989, vol. 37, no. 7, pp. 881–887.

    Article  Google Scholar 

  4. Burkholder, J.B., Sander, S.P., Abbatt, J., Barker, J.R., Huie, R.E., Kolb, C.E., Kurylo, M.J., Orkin, V.L., Wilmouth, D.M., and Wine, P.H., Chemical kinetics and photochemical data for use in atmospheric studies, Evaluation no. 18, Jet PropulsionLaboratory Publ. 15-10, Pasadena: Jet Propulsion Laboratory, 2015.

    Google Scholar 

  5. Dorman, L.I., Eksperimental’nye i teoreticheskie osnovy astrofiziki kosmicheskikh luchei (Experimental and Theoretical Bases of Cosmic Ray Astrophysics), Moscow: Nauka, 1975.

  6. Dunlea, E.J., Talukdar, R.K., and Ravishankara, A.R., Kinetic studies of the reactions of \({{{\text{O}}}_{2}}\left( {{{{\text{b}}}^{1}}\Sigma _{g}^{ + }} \right)\) with several atmospheric molecules, J. Phys. Chem. A, 2005, vol. 109, no. 17, pp. 3912–3920.

    Article  Google Scholar 

  7. Gilmore, F.R., Laher, R.R., and Espy, P.J., Franck–Condon factors, r-centroids, electronic transition moments, and Einstein coefficients for many nitrogen and oxygen band systems, J. Phys. Chem. Ref. Data, 1992, vol. 21, no. 5, pp. 1005–1107.

    Article  Google Scholar 

  8. Itikawa, Y., Cross sections for electron collisions with nitrogen molecules, J. Phys. Chem. Ref. Data, 2006, vol. 35, no. 1, pp. 31–53.

    Article  Google Scholar 

  9. Itikawa, Y., Cross sections for electron collisions with oxygen molecules, J. Phys. Chem. Ref. Data, 2009, vol. 38, no. 1, pp. 1–20.

    Article  Google Scholar 

  10. Kirillov, A.S., The study of intermolecular energy transfers in electronic energy quenching for molecular collisions N2–N2, N2–O2, O2–O2, Ann. Geophys., 2008, vol. 26, no. 5, pp. 1149–1157.

    Article  Google Scholar 

  11. Kirillov, A.S., Excitation and quenching of ultraviolet nitrogen bands in the mixture of N2 and O2 molecules, J. Quant. Spectrosc. Radiat. Transfer, 2011, vol. 112, no. 13, pp. 2164–2174.

    Article  Google Scholar 

  12. Kirillov, A.S., Calculations of rate coefficients for the interaction of singlet and triplet vibrationally excited oxygen, Quantum Electron., 2012, vol. 42, no. 7, pp. 653–658.

    Article  Google Scholar 

  13. Kirillov, A.S., The calculations of quenching rate coefficients of O2(\({{{\text{b}}}^{1}}\Sigma _{{\text{g}}}^{ + }\), v) in collisions with O2, N2, CO, CO2 molecules, Chem. Phys., 2013, vol. 410, pp. 103–108.

    Article  Google Scholar 

  14. Kirillov, A.S., Intermolecular electron energy transfer processes in the quenching of N2(C3Πu, v = 0–4) by collisions with N2 molecules, Chem. Phys. Lett., 2019, vol. 715, pp. 263–267.

    Article  Google Scholar 

  15. Kirillov, A.S. and Belakhovsky, V.B., The kinetics of N2 triplet electronic states in the upper and middle atmosphere during relativistic electron precipitations, Geophys. Res. Lett., 2019, vol. 46, no. 13, pp. 7734–7743.

    Article  Google Scholar 

  16. Kirillov, A.S. and Belakhovsky, V.B., Luminescence of molecular nitrogen bands in the Earth’s atmosphere during the precipitation of high-energy electrons, Geomagn. Aeron. (Engl. Transl.), 2020a, vol. 60, no. 1, pp. 90–95.

  17. Kirillov, A.S. and Belakhovsky, V.B., Luminescence of Lyman–Birge–Hopfield bands of N2 in the Earth’s atmosphere during the precipitation of high-energy electrons,Geomagn. Aeron. (Engl. Transl.), 2020b, vol. 60, no. 6, pp. 781–786.

  18. Kirillov, A.S. and Belakhovsky, V.B., The kinetics of O2 singlet electronic states in the upper and middle atmosphere during energetic electron precipitation, J. Geophys. Res.: Atmos., 2021, vol. 126, no. 5, e2020JD033177. https://doi.org/10.1029/2020JD033177

  19. Kirillov, A.S., Yagodkina, O.I., Ivanov, V.E., and Vorob’ev, V.G., Excitation mechanisms of the 1PG system of N2 in aurorae, Geomagn. Aeron., 1987, vol. 27, no. 3, pp. 419–427.

    Google Scholar 

  20. Krivolutsky, A.A. and Repnev, A.I., Impact of space energetic particles on the Earth’s atmosphere (a review), Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 6, pp. 685–716.

  21. Krivolutsky, A.A. and Repnev, A.I., Vozdeistvie kosmicheskikh faktorov na ozonosferu Zemli (Impact of Cosmic Factors on the Earth’s Ozonosphere), Moscow: GEOS, 2009.

  22. Krupenie, P.H., The spectrum of molecular oxygen, J. Phys. Chem. Ref. Data, 1972, vol. 1, no. 2, pp. 423–534.

    Article  Google Scholar 

  23. Maurchev, E.A. and Balabin, Yu.V., RUSCOSMIC: The new software toolbox for detailed analysis of cosmic ray interactions with matter, J. Sol.–Terr. Phys., 2016, vol. 2, no. 4, pp. 3–10.

    Google Scholar 

  24. Maurchev, E.A., Balabin, Yu.V., Gvozdevsky, B.B., and Vashenyuk, E.V., A new numerical model for investigating cosmic rays in the Earth’s atmosphere, Bull. Russ. Acad. Sci.: Phys., 2015, vol. 79, no. 5, pp. 657–659.

    Article  Google Scholar 

  25. Maurchev, E.A., Mikhalko, E.A., Germanenko, A.V., Balabin, Yu.V., and Gvozdevsky, B.B., RUSCOSMICS software package as a tool for estimating the Earth’s atmosphere ionization rate by cosmic ray protons, Bull. Russ. Acad. Sci.: Phys., 2019, vol. 83, no. 5, pp. 653–656.

    Article  Google Scholar 

  26. Piper, L.G., Energy transfer studies on \({{{\text{N}}}_{2}}\left( {{{{\text{X}}}^{1}}\Sigma _{{\text{g}}}^{ + },\nu } \right)\) and \({{{\text{N}}}_{2}}\left( {{{{\text{B}}}^{3}}{{\Pi }_{{\text{g}}}}} \right)\), J. Chem. Phys., 1992, vol. 97, no. 1, pp. 270–275.

    Article  Google Scholar 

  27. Porter, H.S., Jackman, C.H., and Green, A.E.S., Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air, J. Chem. Phys., 1976, vol. 65, no. 1, pp. 154–167.

    Article  Google Scholar 

  28. Shefov, N.N., Semenov, A.I., and Khomich, V.Yu., Izluchenie verkhnei atmosfery – indikator ee struktury i dinamiki (Airglow as an Indicator of Upper Atmospheric Structure and Dynamics), Moscow: GEOS, 2006.

  29. Shirokov, Yu.M. and Yudin, N.P., Yadernaya fizika. Uchebnoe posobie (Nuclear Physics: A Manual), Moscow: Nauka, 1980.

  30. Simpson, J.A., Introduction to the galactic cosmic radiation, in Composition and Origin of Cosmic Rays, Shapiro, M.M., Ed., Dordrecht: Springer, 1983, vol. 107, pp. 1–24.

    Google Scholar 

  31. Turunen, E., Verronen, P.T., Seppala, A., Rodger, C.J., Clilverd, M.A., Tamminen, J., Enell, C.-F., and Ulich, T., Impact of different energies of precipitating particles on NOx generation in the middle and upper atmosphere during geomagnetic storms, J. Atmos. Sol.-Terr. Phys., 2009, vol. 71, nos. 10–11, pp. 1176–1189.

    Article  Google Scholar 

  32. Umemoto, H., Selective production and kinetic analysis of thermally equilibrated N2(B3Πg, v = 0) and N2(W3Δu, v = 0), Phys. Chem. Chem. Phys., 2003, vol. 5, no. 24, pp. 5392–5398.

    Article  Google Scholar 

  33. Vashenyuk, E.V., Balabin, Yu.V., and Gvozdevsky, B.B., Features of relativistic solar proton spectra derived from ground level enhancement events (GLE) modeling, Astrophys. Space Sci. Trans., 2011, vol. 7, no. 4, pp. 459–463.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 18-77-10018.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. S. Kirillov or V. B. Belakhovsky.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirillov, A.S., Belakhovsky, V.B., Maurchev, E.A. et al. Luminescence of Molecular Nitrogen and Molecular Oxygen in the Earth’s Middle Atmosphere During the Precipitation of High-Energy Protons. Geomagn. Aeron. 61, 864–870 (2021). https://doi.org/10.1134/S0016793221060086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793221060086

Navigation