Skip to main content
Log in

Global-Scale Coupling Characteristics between Geomagnetic Storms and Ionospheric Disturbances

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

To explore the global-scale coupling characteristics between ionospheric disturbances and geomagnetic storms, and research the near-Earth space environment, the time synchronization, correlation, and fitting relationship of geomagnetic field and ionosphere are analyzed in 78 geomagnetic storms from 2013 to 2017. Simultaneously, in order to improve the accuracy of ionospheric disturbance monitoring, a method for detecting ionospheric disturbances based on wavelet transform is proposed. Results show that the signal noise of global electron content is abnormally enhanced in 76% of the geomagnetic storm events, and the abnormal period coincides with the fluctuation period of the geomagnetic index. Two parameters, named Match and non-Match, are proposed to quantify the time synchronization between geomagnetic storms and ionospheric disturbances, it is found that a high synchronization exists between the two. The weighted polynomial function model, which used the ionospheric and geomagnetic parameters, is established. The fitting results show a significant functional relationship between the two, indicating that geomagnetic storm has a significant effect on ionospheric disturbance. The T-test results indicate a significant correlation between the fitted function and the measured data in 86% storm events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Abdu, M., Maruyama, T., Batista, I.S., Saito, S., and Nakamura, M., Ionospheric responses to the October 2003 superstorm: Longitude/local time effects over equatorial low and middle latitudes, J. Geophys. Res. 2007, 112, A10306.

    Article  Google Scholar 

  2. Adekoya, B.J. and Adebesin, B.O., Ionospheric and solar wind variation during magnetic storm onset and main phase at low- and mid-latitudes, Acta Geophys., 2015, vol. 63, pp. 1150–1180.

    Article  Google Scholar 

  3. Adekoya, B.J., Chukwuma, V.U., Bakare, N.O., et al., Effects of geomagnetic storm on middle latitude ionospheric F2 during storm of 2–6 April 2004, Ind. J. Radio Space Phys., 2012, vol. 41, pp. 606–616.

    Google Scholar 

  4. Afraimovich, E.L., Astafyeva, E.I., and Zhivetiev, I.V., Solar activity and global electron content, Dokl. Earth Sci., 2006, vol. 409, pp. 921–924.

    Article  Google Scholar 

  5. Afraimovich, E.L., Astafyeva, E.I., Oinats, A.V., et al. Global electron content: A new conception to track solar activity, Ann. Geophys., 2008, vol. 26, pp. 335–344.

    Article  Google Scholar 

  6. Bagiya, M.S., Joshi, H.P., Iyer, K.N., et al., TEC variations during low solar activity period (2005–2007) near the Equatorial Ionospheric Anomaly Crest region in India, Ann. Geophys., 2009, vol. 27, pp. 1047–1057.

    Article  Google Scholar 

  7. Baker, D.N., Turner, N.E., and Pulkkinen, T.I., Energy transport and dissipation in the magnetosphere during geomagnetic storms. J. Atmos. Sol.-Terr. Phys., 2001, vol. 63, no. 5, pp. 421–429.

    Article  Google Scholar 

  8. Blagoveshchensky, D.V., Pirog, O.M., Polekh, N.M., and Christyakova, L.V., Mid-latitude effects of the May 15, 1997 magnetic storm, J. Atmos. Sol.-Terr. Phys., 2003, vol. 65, pp. 203–210.

    Article  Google Scholar 

  9. Chapman, S. and Bartels, J., Geomagnetism, Oxford: Clarendon Press, 1940.

    Google Scholar 

  10. Ding, F., Wan, W.X., Ning, B.Q., et al., Large-scale traveling ionospheric disturbances observed by GPS TEC during the magnetic storm of October 29–30 2003, J. Geophys. Res., 2007, vol. 112.

  11. Dos Santos Prol, F., Hernández-Pajares, M., Tadeu de Assis Honorato Muella, M., and De Oliveira Camargo, P., Tomographic imaging of ionospheric plasma bubbles based on GNSS and radio occultation measurements, Remote Sens., 2018, vol. 10, no. 10, id 1529.

  12. Fuller-Rowell, T.J., Millward, G.H., Richmond, A.D, et al., Storm-time changes in the upper atmosphere at low latitudes, J. Atmos. Sol.-Terr. Phys., 2002, vol. 64, pp. 1383–1391.

    Article  Google Scholar 

  13. Gulyaeva, T.L. and Veselovsky, I.S., Two-phase storm profile of global electron content in the ionosphere and plasmasphere of the Earth. J. Geophys. Res.: Atmos., 2012, vol. 117, id 9324.

  14. Jin, S., Jin, R., and Kutoglu, H., Positive and negative ionospheric responses to the March 2015 geomagnetic storm from BDS observations, J. Geod., 2017, vol. 91, pp. 613–626.

    Article  Google Scholar 

  15. Li, S., Galas, R., Ewert, D., et al., An empirical model for the ionospheric global electron content storm-time response, Acta Geophys., 2016, vol. 64, pp. 253–269.

    Article  Google Scholar 

  16. Liu, L., Yao, Y., Kong, J., et al., Plasmaspheric electron content inferred from residuals between GNSS-derived and TOPEX/JASON vertical TEC data, Remote Sens., 2018, vol. 10, id 621.

  17. Luis, G., Sabbione, J.I., Maria, A.V.Z., et al., Determination of a geomagnetic storm and substorm effects on the ionospheric variability from GPS observations at high latitudes, J. Atmos. Sol.-Terr. Phys., 2007, vol. 69, pp. 955–968.

    Article  Google Scholar 

  18. Meza, A., María, A.V.Z., Brunini, C., et al., Vertical total electron content and geomagnetic perturbations at mid- and sub-auroral southern latitudes during geomagnetic storms. J. Atmos. Sol.-Terr. Phys., 2005, vol. 67, pp. 315–323.

    Article  Google Scholar 

  19. Palacios, J., Guerrero, A., Cid, C., et al., Defining scale thresholds for geomagnetic storms through statistics, Nat. Hazards Earth Syst. Sci., 2017, pp. 1–19.

  20. Pedatella, N.M., Forbes, J.M., Lei, J., Thayer, J.P., and Larson, K.M., Changes in the longitudinal structure of the low-latitude ionosphere during the July 2004 sequence of geomagnetic storms, J. Geophys. Res., 2008, vol. 113, A11315.

    Article  Google Scholar 

  21. Perevalova, N.P., Afraimovich, E.L., Voeykov, S.V., et al., Parameters of large-scale TEC disturbances during the strong magnetic storm on 29 October 2003, J. Geophys. Res.: Space Phys., 2008, vol. 113, no. A3

  22. Sahai, Y., Becker-Guedes, F., and Fagundes, P.R., Response of nighttime equatorial and low latitude F-region to the geomagnetic storm of August 18, 2003 in the Brazilian sector, Adv. Space Res., 2007, vol. 39, pp. 13–25.

    Article  Google Scholar 

  23. She, C., Wan, W., and Xu, G., Climatological analysis and modeling of the ionospheric global electron content, Chin. Sci. Bull., 2008, vol. 53, pp. 282–288.

    Article  Google Scholar 

  24. Simi, K.G., Manju, G., Haridas, M.M., et al., Ionospheric response to a geomagnetic storm during November 8–10, 2004, Earth Planets Space, 2013, vol. 65, pp. 343–350.

    Article  Google Scholar 

  25. Song, Q., Ding, F., Wan, W.X., et al. Monitoring traveling ionospheric disturbances using the GPS network around China during the geomagnetic storm on 28 May 2011, Sci. China Earth Sci., 2013, vol. 56, pp. 718–726.

    Article  Google Scholar 

  26. Tapping, K.F., The 10.7 cm solar radio flux (F 10.7), Space Weather, 2013, vol. 11, no. 7, pp. 394–406.

    Article  Google Scholar 

  27. Trivedi, R., Jain, A., Jain, S., et al., Study of TEC changes during geomagnetic storms occurred near the crest of the equatorial ionospheric ionization anomaly in the Indian sector, Adv. Space Res., 2011, vol. 48, pp. 1617–1630.

    Article  Google Scholar 

  28. Tsurutani, B., Mannucci, A., and Iijima, B., Global dayside Ionospheric uplift and enhancement associated with interplanetary electric fields, J. Geophys. Res., 2004, vol. 109, A08302.

    Article  Google Scholar 

  29. Sang, Y.-F., Wang, D., Wu, J.-C., Zhu, Q.-P., and Wang, L., Improved continuous wavelet analysis of variation in the dominant period of hydrological time series, Hydrol. Sci. J., 2013, vol. 58, no. 1, pp. 118–132.

    Article  Google Scholar 

  30. Sheng, Z., Xie, S., and Pan, C. Probability Theory and Mathematical Statistics, Beijing: Higher Education Press, 2008.

    Google Scholar 

  31. Yang, L., Fu, L., Wang, J., et al., Studying ionosphere responses to a geomagnetic storm in June 2015 with multi-constellation observations, Remote Sens., 2018, vol. 10, id 666.

  32. Yenen, S.D., Gulyaeva, T.L., Arikan, F., et al., Association of ionospheric storms and substorms of Global Electron Content with proxy AE index, Adv. Space Res., 2015, vol. 56, no. 7, pp. 1343–1353.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The results presented in this paper rely on data collected at geomagnetic observatories, so we thank for International association of geomagnetism and upper atmosphere physics (IAGA) and International Real-time Magnetic Observatory Network (INTERMAGNET), which had provided high standards of a geomagnetic index and geomagnetic intensity observation data for this research. We would also like to thank the International GNSS Service (IGS) for providing Global Ionosphere Maps data.

Funding

This work is supported by the Research Fund of Chengdu University of Information Technology (no. KYTZ202114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wu.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nisong Pei, Wu, Y., Su, R. et al. Global-Scale Coupling Characteristics between Geomagnetic Storms and Ionospheric Disturbances. Geomagn. Aeron. 61, 632–646 (2021). https://doi.org/10.1134/S0016793221040101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793221040101

Navigation