Skip to main content
Log in

Estimation of a Tropospheric Electric Field Associated with the African Zone of Thunderstorm Activity that Penetrates the Ionosphere

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The penetration of the nighttime ionosphere by electric fields in the African zone of thunderstorm activity is studied based on calculations. These fields are caused by both the Coulomb charges of thunderclouds and the electric current generated by them as elements of the global electric circuit in the studied zone. An electric field is produced by the sum of Coulomb fields from each of the 600 thunderclouds in the zone in the first case and by an average total upward current of 600 A in the second case (1 A from each thundercloud, when it is considered an elementary, bipolar, point, quasi-stationary current source within the global atmospheric electrical circuit model in the African zone of thunderstorm activity). It is found that tropospheric Coulomb charges produce weak electric fields (of no more 1 μV/m) in the ionosphere. However, an ionospheric electric field produced by the total current from thunderclouds in the African zone of thunderstorm activity can attain ~0.2 mV/m at ionospheric altitudes at night in winter during periods of low solar activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Brooks, C.E.P., The distribution of thunderstorms over the globe, Geophys. Mem. London, 1925, vol. 3, no. 24, pp. 147–164.

    Google Scholar 

  2. Chalmers, J.A., Atmospheric Electricity, London: Pergamon, 1967.

    Google Scholar 

  3. Crichlow, W.Q., Davis, R.C., Disney, R.T., and Clark, M.W., Hourly probability of world-wide thunderstorm occurrence, Telecommunications Research Report OT/ITS RR 12, U.S. Department of Commerce, Boulder, Colo., April 1971.

  4. Davydenko, S.S., Mareev, E.A., Marshall, T.C., and Stolzenburg, M., On the calculation of electric fields and currents of mesoscale convective systems, J. Geophys. Res., 2004, vol. 109, D11103. https://doi.org/10.1029/2003JD003832

    Article  Google Scholar 

  5. Denisenko, V.V., Boudjada, M.Y., Horn, M., Pomozov, E.V., Biernat, H.K., Schwingenschuh, K., Lammer, H., Prattes, G., and Cristea, E., Ionospheric conductivity effects on electrostatic field penetration into the ionosphere, Nat. Hazards Earth Syst. Sci., 2008, vol. 8, no. 5, pp. 1009–1017. https://doi.org/10.5194/nhess-8-1009-2008

    Article  Google Scholar 

  6. Denisenko, V.V., Nesterov, S.A., Boudjada, M.Y., and Lammere, H., A mathematical model of quasistationary electric field penetration from ground to the ionosphere with inclined magnetic field, J. Atmos. Sol.-Terr. Phys., 2018, vol. 179, pp. 527–537. https://doi.org/10.1016/j.jastp.2018.09.002

    Article  Google Scholar 

  7. Denisenko, V., Rycroft, M., and Harrison, G., Mathematical simulation of the ionospheric electric field as a part of the global electric circuit, Surv. Geophys., 2019, vol. 40, no. 1, pp. 1–35. https://doi.org/10.1007/s10712-018-9499-6

    Article  Google Scholar 

  8. Farley, D.T., Jr., A theory of electrostatic fields in the ionosphere at nonpolar geomagnetic latitudes, J. Geophys. Res., 1960, vol. 65, no. 3, pp. 869–877. https://doi.org/10.1029/JZ065i003p00869

    Article  Google Scholar 

  9. Frenkel’, Ya.I., Teoriya yavlenii atmosfernogo elektrichestva (Theory of Atmospheric Electricity Phenomena), Moscow: KomKniga, 2007.

  10. Hays, P.B. and Roble, R.G., A quasi-static model of global atmospheric electricity. 1. The lower atmosphere, J. Geophys. Res., 1979, vol. 84, no. A7, pp. 3291–3305. https://doi.org/10.1029/JA084iA07p03291

    Article  Google Scholar 

  11. Hegai, V.V., Kim, V.P., and Liu, J.Y., On a possible seismo–magnetic effect in the topside ionosphere, Adv. Space Res., 2015, vol. 56, no. 8, pp. 1707–1713. https://doi.org/10.1016/j.asr.2015.07.034

    Article  Google Scholar 

  12. https://ccmc.gsfc.nasa.gov/modelweb/models/iri2016_ vitmo.php.

  13. https://modelweb.gsfc.nasa.gov/atmos/nrlmsise00.html.

  14. Imyanitov, I.M. and Shifrin, K.S., Present state of research on atmospheric electricity, Sov. Phys. Usp., 1962, vol. 5, no. 2, pp. 292–322. https://doi.org/10.1070/PU1962v005n02ABEH003413

    Article  Google Scholar 

  15. Kartalev, M.D., Rycroft, M.J., Fuellekrug, M., Papitashvili, V.O., and Keremidarska, V.I., A possible explanation for the dominant effect of South American thunderstorms on the Carnegie curve, J. Atmos. Sol.-Terr. Phys., 2006, vol. 68, nos. 3–5, pp. 457–468. https://doi.org/10.1016/j.jastp.2005.05.012

    Article  Google Scholar 

  16. Kasemir, H.W., The thundercloud, in Problems of Atmospheric and Space Electricity, Coroniti, S.C., Ed., New York: Elsevier, 1965, pp. 215–235.

    Google Scholar 

  17. Khegai, V.V., Analytical model of a seismogenic electric field according to data of measurements in the surface layer of the midlatitude atmosphere and calculation of its magnitude at the ionospheric level, Geomagn. Aeron. (Engl. Transl.), 2020, vol. 60, no. 4, pp. 507–520. 2020. https://doi.org/10.1134/S0016793220030081

  18. Kim, V.P. and Hegai, V.V., On the electric fields produced by dipolar coulomb charges of an individual thundercloud in the ionosphere, J. Astron. Space Sci., 2015, vol. 32, no. 2, pp. 141–144. https://doi.org/10.5140/JASS.2015.32.2.141

    Article  Google Scholar 

  19. Making, M. and Ogawa, T., Responses of atmospheric electric field and air–earth current to variations of conductivity profiles, J. Atmos. Terr. Phys., 1984, vol. 46, no. 5, pp. 431–445. https://doi.org/10.1016/0021-9169(84)90087-4

    Article  Google Scholar 

  20. Malan, D.J., Physics of Lightning, London: English University, 1963.

    Google Scholar 

  21. Mareev, E.A., Global electric circuit research: achievements and prospects, Phys.-Usp., 2010, vol. 53, no. 5, pp. 504–511. https://doi.org/10.3367/UFNe.0180.201005h.0527

    Article  Google Scholar 

  22. Muhleisen, R., The global circuit and its parameters, in Electrical Processes in Atmospheres, Dolezalek, H., Reiter, R., and Landsberg, H.E., Eds., Darmstadt: Dr. Dietrich Steinkopff, 1976, pp. 467–476. https://doi.org/10.1007/978-3-642-85294-7_73.

  23. Park, C.G. and Dejnakarintra, M., Penetration of thundercloud electric fields into the ionosphere and magnetosphere: 1. Middle and subauroral latitudes, J. Geophys. Res., 1973, vol. 78, no. 28, pp. 6623–6633. https://doi.org/10.1029/JA078i028p06623

    Article  Google Scholar 

  24. Rycroft, M.J., Odzimek, A., Arnold, N.F., Fullekrug, M., Kulak, A., and Neubert, T., New model simulations of the global atmospheric electric circuit driven by thunderstorms and electrified shower clouds: The roles of lightning and sprites, J. Atmos. Sol.-Terr. Phys., 2007, vol. 69, nos. 17–18, pp. 2485–2509. https://doi.org/10.1016/j.jastp.2007.09.004

    Article  Google Scholar 

  25. Uman, M.A., Lightning, New York: McGraw-Hill, 1969.

    Google Scholar 

  26. Weisberg, J.S., Meteorology: The Earth and Its Weather, Boston: Houghton Mifflin Company, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Khegai, L. P. Korsunova or A. D. Legen’ka.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khegai, V.V., Korsunova, L.P. & Legen’ka, A.D. Estimation of a Tropospheric Electric Field Associated with the African Zone of Thunderstorm Activity that Penetrates the Ionosphere. Geomagn. Aeron. 61, 559–564 (2021). https://doi.org/10.1134/S001679322104006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001679322104006X

Navigation