Skip to main content
Log in

Forecast of the Quasi-Stationary and Transient Solar Wind Streams Based on Solar Observations in 2010

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The results of the forecasting of quasi-stationary and transient solar wind streams velocity for a period from May to December 2010 are presented. The velocity of quasi-stationary solar wind streams on the near-Earth orbit was calculated with the empiric model based on an analysis of solar images obtained in the extreme ultraviolet. The velocity and arrival time of the interplanetary coronal mass ejections were predicted with the Drag-Based Model. The results of the forecast of the velocity of quasi-stationary solar wind streams were used as a parameter of the interplanetary medium through which the transient streams propagate and with which they interact. For the period of May–December 2010, 94 coronal mass ejections were selected from the databases, which were updated in near-real time. Analysis of the forecast results has shown that 67% of the selected interplanetary coronal mass ejections had a predicted velocity of less than 400 km/s, and 96% of them are associated with a quiet geomagnetic conditions (Dst > –30 nT). The forecast of quasi-stationary solar wind streams is improved by the addition of the prediction of interplanetary coronal mass ejections. For the period from May to December 2010, the standard deviation between the solar wind stream velocities measured on the ACE spacecraft and the predicted values, which take into account both quasi-stationary and transient streams, is 82 km/s, and the correlation coefficient is 0.6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Arge, C.N. and Pizzo, V.J., Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates, J. Geophys. Res.: Space Phys., 2000, vol. 105, pp. 10465–10480. https://doi.org/10.1029/1999JA000262

    Article  Google Scholar 

  2. Arge, C.N., Luhmann, J.G., Odstrcil, D., Schrijver, C.J., and Li, Y., Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME, J. Atmos. Sol-Terr. Phys., 2004, vol. 66, pp. 1295–1309. https://doi.org/10.1016/j.jastp.2004.03.018

    Article  Google Scholar 

  3. Bu, X., Luo, B., Shen, C., Liu, S., Gong, J., Cao, Y., and Wang, H., Forecasting high-speed solar wind streams based on solar extreme ultraviolet images, Space Weather, 2019, vol. 17, pp. 1040–1058. https://doi.org/10.1029/2019SW002186

    Article  Google Scholar 

  4. Burlaga, L., Berdichevsky, D., Gopalswamy, N., Lepping, R., and Zurbuchen, T., Merged interaction regions at 1 AU, J. Geophys. Res: Space Physics, 2003, vol. 108, no. A12, pp. 1–12. https://doi.org/10.1029/2003JA010088

    Article  Google Scholar 

  5. Gopalswamy, N., Shimojo, M., Lu, W., Yashiro, S., Shibasaki, K., and Howard, R.A., Prominence eruptions and coronal mass ejection: a statistical study using microwave observations, Astrophys. J., 2003, vol. 586, no. 1, pp. 562–578. https://doi.org/10.1086/367614

    Article  Google Scholar 

  6. Kalegaev, V., Panasyuk, M., Myagkova, I., et al., Monitoring, analysis and post-casting of the Earth’s particle radiation environment during February 14–March 5, 2014, J. Space Weather Space Clim., 2019, vol. 9, id A29. https://doi.org/10.1051/swsc/2019029

  7. Kilpua, E.K.J., Jian, L.K., Li, Y., Luhmann, J.G., and Russell, C.T., Observations of ICMEs and ICME-like solar wind structures from 2007–2010 using near-Earth and stereo observations, Sol. Phys., 2012, vol. 281, pp. 391–409. https://doi.org/10.1007/s11207-012-9957-0

    Article  Google Scholar 

  8. Kraaikamp, E. and Verbeeck, C., Solar demon—an approach to detecting flares, dimmings, and EUV waves on SDO/AIA images, J. Space Weather Space Clim., 2015, vol. 5, pp. 1–16. https://doi.org/10.1051/swsc/2015019

    Article  Google Scholar 

  9. Nieves-Chinchilla, T., Vourlidas, A., Stenborg, G., Savani, N.P., Koval, A., Szabo, A., and Jian, L.K., Inner heliospheric evolution of a “stealth” CME derived from multi-view imaging and multipoint in-situ observations: I. Propagation to 1 AU, Astrophys. J., 2013, vol. 779, no. 1, pp. 55–68. https://doi.org/10.1088/0004-637X/779/1/55

    Article  Google Scholar 

  10. Odstrčil, D. and Pizzo, V.J., Three-dimensional propagation of CMEs in a structured solar wind flow: 1. CME launched within the streamer belt, J. Geophys. Res., 1999, vol. 104, pp. 483–492. https://doi.org/10.1029/1998JA900019

    Article  Google Scholar 

  11. Odstrčil, D., Riley, P., and Zhao, X.P., Numerical simulation of the 12 May 1997 interplanetary CME event, J. Geophys. Res.: Space Phys., 2004, vol. 109, A02116, pp. 1–8. https://doi.org/10.1029/2003JA010135

    Article  Google Scholar 

  12. Owens, M.J., Arge, C.N., Spence, H.E., and Pembroke, A., An event-based approach to validating solar wind speed predictions: High-speed enhancements in the Wang-Sheeley-Arge model, J. Geophys. Res., 2005, vol. 110, pp. 25613–25620. https://doi.org/10.1029/2005JA011343

    Article  Google Scholar 

  13. Pomoell, J. and Poedts, S., EUHFORIA: European heliospheric forecasting information asset, J. Space Weather Space Clim., 2018, vol. 8, no. A35, pp. 1–14. https://doi.org/10.1051/swsc/2018020

    Article  Google Scholar 

  14. Prise, A.J., Harra, L.K., Matthews, S.A., Arridge, C.S., and Achilleos, N., Analysis of a coronal mass ejection and corotating interaction region as they travel from the Sun passing Venus, Earth, Mars, and Saturn, J. Geophys. Res: Space Phys., 2015, vol. 120, pp. 1566–1588. https://doi.org/10.1002/2014JA020256

    Article  Google Scholar 

  15. Reiss, M.A., Temmer, M., Veronig, A.M., Nikolic, L., Vennerstrom, S., Reiss M. A., Temmer M., Veronig A.M., Nikolic L., Vennerstrom S., Schöngassner, F., and Hofmeister, S.J., Verification of high-speed solar wind stream forecasts using operational solar wind models, Space Weather, 2016, vol. 14, pp. 495–510. https://doi.org/10.1002/2016SW001390

    Article  Google Scholar 

  16. Richardson, I.G. and Cane, H.V., Regions of abnormally low proton temperature in the solar wind (1965–1991) and their association with ejecta, J. Geophys. Res: Space Phys., 1995, vol. 100, pp. 23397–23412. https://doi.org/10.1029/95JA02684

    Article  Google Scholar 

  17. Riley, P., Mays, L., Andries, J., et al., Forecasting the arrival time of coronal mass ejections: Analysis of the CCMC CME scoreboard, Space Weather, 2018, vol. 16, pp. 1245–1260.https://doi.org/10.1029/2018SW001962

    Article  Google Scholar 

  18. Rodkin, D., Slemzin, V., Zhukov, A.N., Goryaev, F., Shugay, Yu., and Veselovsky, I., Single ICMEs and complex transient structures in the solar wind in 2010–2011, Sol. Phys., 2018, vol. 293, no. A78, pp. 1–27. https://doi.org/10.1007/s11207-018-1295-4

    Article  Google Scholar 

  19. Shi, T., Wang, Y., Wan, L., Cheng, X., Ding, M., and Zhang, J., Predicting the arrival time of coronal mass ejections with the graduated cylindrical shell and drag force model, Astrophys. J., 2015, no. 2, id 271. https://doi.org/10.1088/0004-637X/806/2/271

  20. Shiota, D. and Kataoka, R., Magnetohydrodynamic simulation of interplanetary propagation of multiple coronal mass ejections with internal magnetic flux rope (SUSANOO-CME), Space Weather, 2016, vol. 14, pp. 56–75. https://doi.org/10.1002/2015SW001308

    Article  Google Scholar 

  21. Shugay, YuS., Veselovsky, I.S., Seaton, D.B., and Berghmans, D., Hierarchical approach to forecasting recurrent solar wind streams, Sol. Syst. Res., 2011, vol. 45, no. 6, pp. 546–556. https://doi.org/10.1134/S0038094611060086

    Article  Google Scholar 

  22. Shugay, Y.S., Slemzin, V.A., and Rod’kin, D.G., Features of solar wind streams on June 21–28, 2015 as a result of interactions between coronal mass ejections and recurrent streams from coronal holes, Cosmic Res., 2017, vol. 55, pp. 389–395. https://doi.org/10.1134/S0010952517060107

    Article  Google Scholar 

  23. Shugay, Yu., Slemzin, V., Rodkin, D., Yermolaev, Yu., and Veselovsky, I., Influence of coronal mass ejections on parameters of high-speed solar wind: A case study, J. Space Weather Space Clim., 2018, vol. 8, no. A28, pp. 1–13. https://doi.org/10.1051/swsc/2018015

    Article  Google Scholar 

  24. Temmer, M., Reiss, M.A., Nikolic, L., Hofmeister, S.J., and Veronig, A.M., Preconditioning of interplanetary space due to transient CME disturbances, Astrophys. J., 2017, vol. 835, no. 2, pp. 141–147. https://doi.org/10.3847/1538-4357/835/2/141

    Article  Google Scholar 

  25. Vršnak, B., Žic, T., Vrbaneck, D., Temmer, M., et al., Propagation of interplanetary coronal mass ejections: The drag-based model, Sol. Phys., 2013, vol. 285, pp. 295–315. https://doi.org/10.1007/s11207-012-0035-4

    Article  Google Scholar 

  26. Vršnak, B., Temmer, M., Žic, T., Taktakishvili, A., Dumbović, M., Möstl, C., Veronig, A.M., Mays, M.L., and Odstrčil, D., Heliospheric propagation of coronal mass ejections: Comparison of numerical WSA-ENLIL+Cone model and analytical drag-based model, Astrophys J. Suppl. Ser., 2014, vol. 213, no. 2, pp. 21–30. https://doi.org/10.1088/0067-0049/213/2/21

    Article  Google Scholar 

  27. Xie, H., Ofman, L., and Lawrence, G., Cone model for halo CMEs: Application to space weather forecasting, J. Geophys. Res.: Space Phys., 2004, vol. 109, A03109, pp. 1–13. https://doi.org/10.1029/2003JA010226

    Article  Google Scholar 

  28. Yermolaev, Yu.I. and Yermolaev, M.Yu., Solar and interplanetary sources of geomagnetic storms: Space weather aspects, Geofiz. Protsessy Biosfera, 2009, vol. 8, no. 1, pp. 5–35.

    Google Scholar 

  29. Yermolaev, Yu.I., Nikolaeva, N.S., Lodkina, I.G., and Yermolaev, M.Yu., Catalog of large-scale solar wind phenomena during 1976–2000, Cosmic Res., 2009, vol. 47, no. 2, pp. 81–94.

    Article  Google Scholar 

  30. Zhao, X.P., Plunkett, S.P., and Liu, W., Determination of geometrical and kinematical properties of halo coronal mass ejections using the cone model, J. Geophys. Res.: Space Phys., 2002, vol. 107, pp. 1223–1232. https://doi.org/10.1029/2001JA009143

    Article  Google Scholar 

  31. Žic, T., Vršnak, B., and Temmer, M., Heliospheric propagation of coronal mass ejections: Drag-based model fitting, Astrophys. J. Suppl. Ser., 2015, vol. 218, no. 2, pp. 32–39. https://doi.org/10.1088/0067-0049/218/2/32

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the research teams of the Solar Dynamics Observatory/Atmospheric Imaging Assembly and Advanced Composition Explorer projects and to the compilers of the CACTus, SEEDS, and Solar Demon databases for access to the data.

Funding

The study was performed at the Skobeltsyn Institute of Nuclear Physics of Moscow State University and supported by the Russian Scientific Foundation, grant no. 16-17-00098.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. S. Shugay or K. B. Kaportseva.

Additional information

Translated by M. Samokhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shugay, Y.S., Kaportseva, K.B. Forecast of the Quasi-Stationary and Transient Solar Wind Streams Based on Solar Observations in 2010. Geomagn. Aeron. 61, 158–168 (2021). https://doi.org/10.1134/S001679322102016X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001679322102016X

Navigation