Skip to main content
Log in

Diurnal and Longitudinal Variations in the Equatorial Anomaly for Winter Solstice According to Interkosmos-19 Satellite Data

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The equatorial anomaly dynamics in the winter solstice is studied based on data from topside sounding of the ionosphere from the Interkosmos-19 satellite for high solar activity. This is the final study on the construction of the pattern of equatorial anomaly variations under conditions of high solar activity. Changes in the equatorial anomaly structure with local time and longitude are considered in detail. It is shown that the anomaly begins to form at ~0800 LT during the creation of the winter northern crest, but the well-developed equatorial anomaly is formed only by 10001100 LT. The daytime maximum of the equatorial anomaly development is reached at 1200 LT. The foF2 value above the equator and the degree of the equatorial anomaly development (equatorial anomaly intensity, EAI) at 1200 LT vary with longitude according to changes in the vertical plasma drift velocity W. Three harmonics are observed in the longitudinal variations in W, foF2, and EAI at this time. The EAI increases up to the diurnal maximum 1.5−2.0 h after the evening W burst. Longitudinal variations in foF2 at 2000 LT are also associated with the relevant variations in W, in which two harmonics are revealed. The degree of equatorial anomaly development drops after the evening peak but equatorial anomaly is still well-developed at midnight and is completely absent at 05000700 LT. The EAI at different moments of local time differs rather strongly for different longitudinal sectors. The average position of northern crest is ~25° of the geomagnetic inclination I, and the southern crest is at ~–30° I. During the day, the winter crest is higher than the summer crest; by night-time, it is quite the opposite. Thus, a well-expressed equatorial anomaly is observed from 10001100 to 00000200 LT during the winter solstice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Balan, N. and Bailey, G.J., Equatorial plasma fountain and its effects: Possibility of an additional layer, J. Geophys. Res., 1995, vol. 100, no. 11, pp. 21421–21432. https://doi.org/10.1029/95JA01555

    Article  Google Scholar 

  2. Bellchambers, W.H. and Piggott, W.R., Ionospheric measurements made at Halley Bay, Nature, 1958, vol. 182, pp. 1596–1597. https://doi.org/10.1038/1821596a0

    Article  Google Scholar 

  3. Chen, Y., Liu, L., Le, H., Wan, W., and Zhang, H., Equatorial ionization anomaly in the low-latitude topside ionosphere: Local time evolution and longitudinal difference, J. Geophys. Res., 2016, vol. 121, pp. 7166–7182. https://doi.org/10.1002/2016JA022394

    Article  Google Scholar 

  4. Eccles, D. and King, J.W., A review of topside sounder studies of the equatorial ionosphere, Proc. IEEE, 1969, vol. 57, no. 6, pp. 1012–1018. https://doi.org/10.1109/PROC.1969.7145

    Article  Google Scholar 

  5. Fejer, B.G., Jensen, J.W., and Su, S.-Y., Quiet time equatorial f region vertical plasma drift model derived from ROCSAT-1 observations, J. Geophys. Res., 2008, vol. 113, A05304. https://doi.org/10.1029/2007JA012801

    Article  Google Scholar 

  6. Hopkins, H.D., Longitudinal variation of the equatorial anomaly, Planet. Space Sci., 1972, vol. 20, no. 12, pp. 2093–2098. https://doi.org/10.1016/0032-0633(72)90065-7

    Article  Google Scholar 

  7. Horvath, I. and Essex, E.A., The Weddell Sea anomaly observed with the TOPEX satellite data, J. Atmos. Sol.-Terr. Phys., 2003, vol. 65, pp. 693–706. https://doi.org/10.1016/S1364-6826(03)00083-X

    Article  Google Scholar 

  8. Huang, Y.-N. and Cheng, K., Solar cycle variations of the equatorial ionospheric anomaly in total electron content in the Asian region, J. Geophys. Res., 1996, vol. 101, no. 11, pp. 24513–24520. https://doi.org/10.1016/0021-9169(94)00147-G

    Article  Google Scholar 

  9. Jackson, J.E., The reduction of topside ionograms to electron-density profiles, Proc. IEEE, 1969, vol. 57, no. 6, pp. 960–976. https://doi.org/10.1109/PROC.1969.7140

    Article  Google Scholar 

  10. Karpachev, A.T., Characteristics of the global longitudinal effect in a nighttime equatorial anomaly, Geomagn. Aeron., 1988, vol. 28, no. 1, pp. 46–49.

    Google Scholar 

  11. Karpachev, A.T., Diurnal and longitudinal variations of the structure of an equatorial anomaly during equinoxes according to Intercosmos-19 satellite data, Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 3, pp. 407–419. https://doi.org/10.1134/S0016793218030076

  12. Karpachev, A.T., Variations in the structure of the equatorial anomaly during the summer solstice according to the Interkosmos-19 satellite, Geomagn. Aeron. (Engl. Transl.), 2020, vol. 60, no. 2, pp. 224–235. https://doi.org/10.1134/S0016793220020061

  13. Karpachev, A.T., Gasilov, N.A., and Karpachev, O.A., Morphology and causes of the Weddell Sea anomaly, Geomagn. Aeron. (Engl. Transl.), 2011, vol. 51, no. 6, pp. 812–824.

  14. Kil, H., Oh, S.-J., Paxton, L.J., and Fang, T.-W., High-resolution vertical e?b drift model derived from rocsat-1 data, J. Geophys. Res., 2009, vol. 114, p. A10314.

    Article  Google Scholar 

  15. King, J.W., Airglow observations and the decay of the ionospheric equatorial anomaly, J. Atmos. Terr. Phys., 1968, vol. 30, pp. 391–402. https://doi.org/10.1016/0021-9169(68)90110-4

    Article  Google Scholar 

  16. King, J.W., Olatunji, E.O., Eccles, D., and Newman, W.S., The integrated electron content in the equatorial ionosphere, J. Atmos. Terr. Phys., 1967, vol. 29, no. 11, pp. 1391–1396. https://doi.org/10.1016/0021-9169(67)90230-9

    Article  Google Scholar 

  17. Klimenko, M.V., Klimenko, V.V., Karpachev, A.T., Ratovsky, K.G., and Stepanov, A.E., Spatial features of Weddell Sea and Yakutsk anomalies in foF2 diurnal variations during high solar activity periods: Interkosmos-19 satellite and ground-based ionosonde observations, IRI reproduction and GSM tip model simulation, Adv. Space Res., 2015, vol. 55, no. 8, pp. 2020–2032. https://doi.org/10.1016/j.asr.2014.12.032

    Article  Google Scholar 

  18. Lei, J., Thayer, J.P., and Forbes, J.M., Longitudinal and geomagnetic activity modulation of the equatorial thermosphere anomaly, J. Geophys. Res., 2010, vol. 115, A08311. https://doi.org/10.1029/2009JA015177

    Article  Google Scholar 

  19. Liu, H. and Watanabe, S., Seasonal variation of the longitudinal structure of the equatorial ionosphere: Does it reflect tidal influences from below?, J. Geophys. Res., 2008, vol. 113, A08315. https://doi.org/10.1029/2008JA013027

    Article  Google Scholar 

  20. Liu, H., Stolle, C., Forster, M., and Watanabe, S., Solar activity dependence of the electron density at 400 km at equatorial and low latitudes observed by CHAMP, J. Geophys. Res., 2007, vol. 112, A11311. https://doi.org/10.1029/2007JA012616

    Article  Google Scholar 

  21. Lockwood, G.E.K. and Nelms, G.L., Topside sounder observations of the equatorial anomaly in the 75°W longitude zone, J. Atmos. Terr. Phys., 1964, vol. 26, no. 5, pp. 569–580. https://doi.org/10.1016/0021-9169(64)90188-6

    Article  Google Scholar 

  22. Lyon, A.J. and Thomas, L., The F2-region equatorial anomaly in the African, American and East Asian sectors during sunspot minimum, J. Atmos. Terr. Phys., 1963, vol. 25, no. 7, pp. 373–386. https://doi.org/10.1016/0021-9169(63)90170-3

    Article  Google Scholar 

  23. Matuura, N., Characteristics of global distribution of foF2, Sol. Terr. Environ. Res. Jpn., 1981, vol. 5, pp. 35–38.

    Google Scholar 

  24. Oh, S.-J., Kil, H., Kim, W.-T., Paxton, L.J., and Kim, Y.H., The role of the vertical E×B drift for the formation of the longitudinal plasma density structure in the low-latitude F region, Ann. Geophys., 2008, vol. 26, no. 7, pp. 2061–2067. https://doi.org/10.5194/angeo-26-2061-2008

    Article  Google Scholar 

  25. Pancheva, D. and Mukhtarov, P., Global response of the ionosphere to atmospheric tides forced from below: Recent progress based on satellite measurements global tidal response of ionosphere, Space Sci. Rev., 2012, vol. 168, nos. 1–4, pp. 175–209. https://doi.org/10.1007/s11214-011-9837-1

    Article  Google Scholar 

  26. Rajaram, G., Structure of the equatorial F-region, topside and bottomside—a review, J. Atmos. Terr. Phys., 1977, vol. 39, no. 9, pp. 1125–1144. https://doi.org/10.1016/0021-9169(77)90021-6

    Article  Google Scholar 

  27. Ram, S.T., Su, S.-Y., and Liu, C.H., FORMOSAT-3/ COSMIC observations of seasonal and longitudinal variations of equatorial ionization anomaly and its interhemispheric asymmetry during the solar minimum period, J. Geophys. Res., 2009, vol. 114, A06311. https://doi.org/10.1029/2008JA013880

    Article  Google Scholar 

  28. Rao, B.C.N., Some characteristic features of the equatorial ionosphere and the location of the F-region equator, J. Geophys. Res., 1963, vol. 68, no. 9, pp. 2541–2549. https://doi.org/10.1029/JZ068i009p02541

    Article  Google Scholar 

  29. Rao, C.S.R. and Malthotra, P.L., A study of geomagnetic anomaly during I.G.Y., J. Atmos. Terr. Phys., 1964, vol. 26, no. 11, pp. 1075–1085. https://doi.org/10.1016/0021-9169(64)90093-5

    Article  Google Scholar 

  30. Rastogi, R.G., Chandra, H., Sharma, R.P., and Rajaram, G., Ground-based measurements of ionospheric phenomena associated with the equatorial electrojet, Indian J. Radio Space Phys., 1972, vol. 1, no. 2, pp. 119–135.

    Google Scholar 

  31. Rush, C.M., Rush, S.V., Lyons, L.R., and Venkateswaran, S.V., Equatorial anomaly during a period of declining solar activity, Radio Sci., 1969, vol. 4, no. 9, pp. 829–841. https://doi.org/10.1029/RS004i009p00829

    Article  Google Scholar 

  32. Sastri, J.H., Equatorial anomaly in F-region—a review, Indian J. Radio Space Phys., 1990, vol. 19, no. 4, pp. 225–240.

    Google Scholar 

  33. Sharma, R.P. and Hewens, E.J., A study of the equatorial anomaly at American longitudes during sunspot minimum, J. Atmos. Terr. Phys., 1976, vol. 38, no. 5, pp. 475–484. https://doi.org/10.1016/0021-9169(76)90004-0

    Article  Google Scholar 

  34. Thomas, L., The F2-region equatorial anomaly during solstice periods at sunspot maximum, J. Atmos. Terr. Phys., 1968, vol. 30, no. 9, pp. 1631–1640. https://doi.org/10.1016/0021-9169(68)90011-1

    Article  Google Scholar 

  35. Tsai, L.-C., Liu, C.H., Hsiao, T.Y., and Huang, J.Y., A near real-time phenomenological model of ionospheric electron density based on GPS radio occultation data, Radio Sci., 2009, vol. 44, RS5002. https://doi.org/10.1029/2009RS004154

    Article  Google Scholar 

  36. Walker, G.O., Longitudinal structure of the F-region equatorial anomaly—a review, J. Atmos. Terr. Phys., 1981, vol. 43, no. 8, pp. 763–774. https://doi.org/10.1016/0021-9169(81)90052-0

    Article  Google Scholar 

  37. Walker, G.O. and Chen, C.S., The diurnal variation of the equatorial anomaly in the topside ionosphere at sunspot maximum, J. Atmos. Sol.-Terr. Phys., 1976, vol. 38, no. 7, pp. 699–706. https://doi.org/10.1016/0021-9169(76)90108-2

    Article  Google Scholar 

  38. Walker, G.O., Ma, J.H.K., and Golton, E., The equatorial ionospheric anomaly in electron content from solar minimum to solar maximum for South East Asia, Ann. Geophys., 1994, vol. 12, nos. 2–3, pp. 195–209. https://doi.org/10.1007/s00585-994-0195-0

    Article  Google Scholar 

  39. Yizengaw, E., Moldwin, M.B., Sahai, Y., and Rodolfo, J., Strong postmidnight equatorial ionospheric anomaly observations during magnetically quiet periods, J. Geophys. Res., 2009, vol. 114, A12308. https://doi.org/10.1029/2009JA014603

    Article  Google Scholar 

  40. Yue, X., Schreiner, W.S., Kuo, Y.-H., and Lei, J., Ionosphere equatorial ionization anomaly observed by GPS radio occultations during 2006–2014, J. Atmos. Sol.-Terr. Phys., 2015, vol. 129, no. 7, pp. 30–40. https://doi.org/10.1016/j.jastp.2015.04.004

    Article  Google Scholar 

  41. Zeng, Z., Burns, A., Wang, W., Lei, J., Solomon, S., Syndergaard, S., Qian, L., and Kuo, Y.-H., Ionospheric annual asymmetry observed by the cosmic radio occultation measurements and simulated by the TIEGCM, J. Geophys. Res., 2008, vol. 113, A07305. https://doi.org/10.1029/2007JA012897

    Article  Google Scholar 

  42. Zhao, B., Wan, W., Liu, L., and Ren, Z., Characteristics of the ionospheric total electron content of the equatorial ionization anomaly in the Asian–Australian region during 1996–2004, Ann. Geophys., 2009, vol. 27, no. 10, pp. 3861–3873. https://doi.org/10.5194/angeo-27-3861-2009

    Article  Google Scholar 

Download references

Funding

This work was supported by the Presidium of the Russian Academy of Sciences (Program No. 28) and the Ministry of Education and Science of the Russian Federation (Project KP 19-270).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Karpachev.

Additional information

Translated by M. Samokhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpachev, A.T. Diurnal and Longitudinal Variations in the Equatorial Anomaly for Winter Solstice According to Interkosmos-19 Satellite Data. Geomagn. Aeron. 61, 29–43 (2021). https://doi.org/10.1134/S0016793221010060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793221010060

Navigation