Skip to main content
Log in

Microwave Emission of a Flare Loop in the Presence of Whistler Turbulence

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The mutual influence of whistler turbulence and fast nonthermal electrons injected into a coronal flare loop is considered. For the loop, аs the inhomogeneous and nonstationary magnetic trap, the kinetic one-dimensional equation is solved in the Fokker–Planck approximation, which takes into account the scattering of fast electrons on whistlers. It is shown that whistlers can both be generated by fast electrons and be damped on them at a certain density of the background plasma and magnetic-field strength. The reverse action of the formed whistler turbulence significantly changes the characteristics of the time, pitch-angle, and energy distributions of electrons. In particular, it leads to breaks in the energy spectrum of nonthermal electrons. As a consequence, this also results in variations of the relevant characteristics of gyrosynchrotron emission of the flare loop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Bespalov, P.A. and Trakhtengerts, V.Yu., Al’fvenovskie mazery (Alfvén Masers), Gor’kii: IPF AN SSSR. 1986.

  2. Charikov, Yu.E. and Shabalin, A.N., Hard X-ray generation in the turbulent plasma of solar flares, Geomagn. Aeron. (Engl. Transl.), 2016, vol. 56, no. 8, pp. 1068–1074.

  3. Charikov, Yu.E., Mel’nikov, V.F., and Kudryavtsev, I.V., Intensity and polarization of the hard X-ray radiation of solar flares at the top and footpoints of a magnetic loop, Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 8, pp. 1021–1031.

  4. Chernov, G.P., Markeev, A.K., Poquerusse, M., et al., New features in type IV solar radio emission: combined effects on plasma wave resonances and MHD waves, Astron. Astrophys., 1998, vol. 334, pp. 314–324.

    Google Scholar 

  5. Filatov, L.V. and Melnikov, V.F., Influence of whistler turbulence on fast electron distribution and their microwave emission in a flare loop, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 8, pp. 1001–1008.

  6. Fleishman, G.D. and Melnikov, V.F., Gyrosynchotron emission from anisotropic electron distributions, Astrophys. J., 2003, vol. 587, no. 2, pp. 823–835.

    Article  Google Scholar 

  7. Hamilton, R.J. and Petrosian, V., Stochastic acceleration of electrons and effects of collisions in solar flares, Astrophys. J., 1992, vol. 398, no. 10, pp. 350–358.

    Article  Google Scholar 

  8. Hamilton, R.J., Lu, E.T., and Petrosian, V., Numerical solution of the time-dependent kinetic equation for electrons in magnetized plasma, Astrophys. J., 1990, vol. 354, no. 1, pp. 726–734.

    Article  Google Scholar 

  9. Kaplan, S.A. and Tsytovich, V.N., Plasma Astrophysics, Oxford: Pergamon, 1973.

    Google Scholar 

  10. Kennel, C.F. and Petschek, H.E., Limit on stably trapped particle fluxes, J. Geophys. Res., 1966, vol. 71, no. 1, pp. 1–28.

    Article  Google Scholar 

  11. Kudryavtsev, I.V. and Charikov, Yu.E., Kinetics of fast electrons in ion-acoustic waves in the turbulent plasma of solar flares, Sov. Astron., 1991, vol. 35, no. 4, pp. 409–414.

    Google Scholar 

  12. Melnikov, V.F. and Filatov, L.V., Conditions for Whistler Generation by Nonthermal Electrons in Flare Loops, Geomag. Aeron., 2020, vol. 60, pp. 1126–1131.

  13. Melnikov, V.F., Reznikova, V.E., Shibasaki, K., and Nakariakov, V.M., Spatially resolved microwave pulsations of a flare loop, Astron. Astrophys., 2005, vol. 439, pp. 727–736.

    Article  Google Scholar 

  14. Melnikov, V.F., Gorbikov, S.P., Reznikova, V.E., and Shibasaki, K., Spatial distribution of relativistic electrons in microwave flare loops, Izv. Akad. Nauk, Ser. Fiz., 2006, vol. 70, pp. 1472–1474

    Google Scholar 

  15. Melrose, D.B., Resonant scattering of particles and second phase acceleration in the solar corona, Sol. Phys., 1974, vol. 37, no. 4, pp. 353–365.

    Article  Google Scholar 

  16. Miller, J.A., Electron acceleration in solar flares by fast mode waves: quasi-linear theory and pitch-angle scattering, Astrophys. J., 1997, vol. 491, no. 2, pp. 939–951.

    Article  Google Scholar 

  17. Minoshima, T., Masuda, S., Miyoshi, Y., and Kusano, K., Coronal electron distribution in solar flares: Drift-kinetic model, Astrophys. J., 2011, vol. 732, no. 10, pp. 1–7.

    Article  Google Scholar 

  18. Morgachev, A.S., Polyakov, V., and Melnikov, V.F., Contribution of thermal bremsstrahlung to microwave emission of solar flare loops, Astron. Rep., 2014, vol. 58, pp. 335–344.

    Article  Google Scholar 

  19. Stepanov, A.V. and Tsap, Y.T., Electron-wistler interaction in coronal loops and radiation signatures, Sol. Phys., 2002, vol. 211, pp. 135–154.

    Article  Google Scholar 

  20. Vedenov, A.A., Velikhov, E.P., and Sagdeev, R.Z., Quasi-linear theory of plasma, Yad. Sint., 1962, vol. 2, no. 2, pp. 465–475.

    Google Scholar 

  21. Veronig, A.M. and Brown, J.C., A coronal thick-target interpretation of two hard X-ray loop events, Astrophys. J., 2004, vol. 603, pp. L117–L120.

    Article  Google Scholar 

  22. Wentzel, D.G., Condition for “storage” of energetic particles in the solar corona, Astrophys. J., 1976, vol. 208, pp. 595–608.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, projects no. 18-02-00856, and 17-52-80064, and the program CAS 2016VWA044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Filatov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by M. Samokhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filatov, L.V., Melnikov, V.F. Microwave Emission of a Flare Loop in the Presence of Whistler Turbulence. Geomagn. Aeron. 60, 1137–1145 (2020). https://doi.org/10.1134/S0016793220080083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793220080083

Navigation