Skip to main content
Log in

Influence of Oxygen Ions on the Structure of the Thin Current Sheet in the Earth’s Magnetotail

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

During geomagnetic substorms, the current sheet in the Earth’s magnetotail can transversely reduce in thickness from a few radii of the Earth (RE) to one to several proton gyroradii, 250–2000 km. It is the key structure in which the energy of the magnetic field is stored and later released due to the development of instability and magnetic reconnection during the substorm period. Despite its small thickness, the thin current sheet has a complex multiscale structure with a hierarchy of embedded layers that determines its properties. During substorms, single-charged oxygen ions enter the Earth’s magnetotail from the ionosphere and their concentrations can be comparable to those of protons. The interaction of oxygen ions with the current sheet, which results in changes in its structure and properties, is not well studied. The self-consistent profiles of the magnetic field, current densities, and plasma in the multicomponent magnetotail plasma are analyzed in a wide range of system parameters within the hybrid model of the quasi-equilibrium current sheet. It is shown that the current sheet is a multiscale structure embedded in a wide plasma layer. The increase in the concentration of oxygen ions in the current sheet leads to its thickening and formation of additional embedded scale. At the same time, breaks characterizing the transition from the oxygen-ion dominated region in the current sheet to the proton- and electron-dominated region appear on the profiles of the magnetic field and current density. The amplitude of the current density of such an embedded layer decreases in proportion to the concentration of oxygen ions. The dependence of the embedding parameter on relative concentrations of heavy ions, as well as their thermal and drift velocities, is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Artemyev, A.V., Petrukovich, A.A., Zelenyi, L.M., Nakamura, R., Malova, H.V., and Popov, V.Yu., Thin embedded current sheets: Cluster observations of ion kinetic structure and analytical models, Ann. Geophys., 2009, vol. 27, pp. 4075–4087. https://www.ann-geophys.net/27/4075/2009.

    Article  Google Scholar 

  2. Artemyev, A.V., Petrukovich, A.A., Nakamura, R., and Zelenyi, L.M., Proton velocity distribution in thin current sheets: Cluster, observations and theory of transient trajectories, J. Geophys. Res., 2010, vol. 115, no. A12, pp. 255–265. https://doi.org/10.1029/2010JA0157022010

    Article  Google Scholar 

  3. Asano, Y., Nakamura, R., Baumjohann, W., Runov, A., Vörös, Z., Volwerk, M., Zhang, T.L., Balogh, A., Klecker, B., and Rème, H., How typical are atypical current sheets?, Geophys. Res. Lett., 2005, vol. 32, no. 3, pp. L03 108–L03 112. https://doi.org/10.1029/2004GL021834

    Article  Google Scholar 

  4. Ashour-Abdalla, M., Zelenyi, L.M., Peroomian, V., and Richard, R.L., Consequences of magnetotail ion dynamics, J. Geophys. Res., vol. 99, no. A8, pp. 14 891–14 916.

  5. Baker, D.N., Pulkinen, T.I., Angelopoulos, V., Baumjohann, W., and McPherron, R.L., Neutral line model of substorms: Past results and present view, J. Geophys. Res., 1996, vol. 101, no. A6, pp. 12 975–13 010.

    Article  Google Scholar 

  6. Baumjohann, W., Roux, A., Le Contel, O., et al., Dynamics of thin current sheets: Cluster observations, Ann. Geophys., 2007, vol. 25, no. 6, pp. 1365–1389.

    Article  Google Scholar 

  7. Büchner, J. and Zelenyi, L.M., Regular and chaotic charged particle motion in magnetotaillike field reversals: 1. Basic theory of trapped motion, J. Geophys. Res., 1989, vol. 94, no. A10, pp. 11 821–11 842.

    Article  Google Scholar 

  8. Cary, J.R., Escande, D.F., and Tennyson, J.L., Adiabatic-invariant change due to separatrix crossing, Phys. Rev. A, 1986, vol. 34, no. 5, pp. 4256–4275.

    Article  Google Scholar 

  9. Chen, J., Nonlinear dynamics of charged particles in the magnetotail, J. Geophys. Res., 1992, vol. 97, no. A10, pp. 15 011–15 050.

    Article  Google Scholar 

  10. Chew, G.F., Goldberger, M.L., and Low, F.E., The Boltzmann equation and one-fluid hydrodynamic equations in the absence collisions, Proc. R. Soc., 1956, vol. A236, pp. 112–120.

  11. Delcourt, D.C., Sauvaud, J.-A., Martin, R.F., Jr., and Moore, T.E., On the nonadiabatic precipitation ions from the near-Earth plasma sheet, J. Geophys. Res., 1996, vol. 101, no. A8, pp. 17 409–17 418.

    Article  Google Scholar 

  12. Eastwood, J.W., Consistency of fields and particle motion in the “Speiser” model of the current sheet, Planet. Space Sci., 1972, vol. 20, no. 10, pp. 1555–1568.

    Article  Google Scholar 

  13. Francfort, P. and Pellat, R., Magnetic merging in collisionless plasmas, Geophys. Res. Lett., 1976, vol. 3, no. A8, pp. 433–436.

    Article  Google Scholar 

  14. Grigorenko, E.E., Shuvalov, S.D., Malova, H.V., Dubinin, E., Popov, V.Yu., Zelenyi, L.M., McFadden, J.P., Connerney, J.E.P., and Epsley, J., Imprints of quasiadiabatic ion dynamics on the current sheet structures observed in the Martian magnetotail by maven, J. Geophys. Res., 2018, vol. 122, no. A10, pp. 1–18. https://doi.org/10.1002/2017JA024216

    Article  Google Scholar 

  15. Harris, E.G., On a plasma sheath separating regions of oppositely directed magnetic fields, Nuovo Cimento, 1962, vol. 23, pp. 115–119.

    Article  Google Scholar 

  16. Kistler, L.M., Mouikis, C.G., Cao, X., et al., Ion composition and pressure changes in storm time and nonstorm substorms in the vicinity of the near-Earth neutral line, J. Geophys. Res., 2006, vol. 111, no. A11, pp. A11 222–A11 234. https://doi.org/10.1029/2006JA011939

    Article  Google Scholar 

  17. Krall, N.A. and Trivelpiece, A.W., Principles of Plasma Physics, New York: McGraw-Hill, 1973.

    Book  Google Scholar 

  18. Kronberg, E., Ashour-Abdalla, M., Dandouras, I., et al., Circulation of heavy ions and their dynamical effects in the magnetosphere: Recent observations and models, Space Sci. Rev., 2014, pp. 173–235. https://doi.org/10.1007/s11214-014-0104-0

  19. Kropotkin, A.P. and Domrin, V.I., Theory of a thin one-dimensional current sheet in collisionless space plasma, J. Geophys. Res., 1996, vol. 101, no. A9, pp. 19 893–19 902.

    Article  Google Scholar 

  20. Landau, L.D. and Lifshits, E.M., Elektrodinamika sploshnykh sred (Electrodynamics of Continuous Media), Moscow: Fizmatlit, 2005.

  21. Lennartsson, W. and Shelley, E.G., Survey of 0.1- to 16‑keV/e plasma sheet ion composition, J. Geophys. Res., 1986, vol. 91, no. A9, pp. 3061–3076. https://doi.org/10.1029/JA091iA03p03061

    Article  Google Scholar 

  22. Lui, A.T.Y., Chang, C.-L., and Yoon, P.H., Preliminary nonlocal analysis of cross-field current instability for substorm expansion onset, J. Geophys. Res., 1995, vol. 100, no. A10, pp. 19 147–19 154.

    Article  Google Scholar 

  23. McPherron, R.L., Nishida, A., and Russell, C.T., Is near-Earth current sheet thinning the cause of auroral substorm onset?, in Quantitative Modeling of Magnetosphere–Ionosphere Coupling Processes, Kamide, Y. and Wolf, R.A., Eds., Kyoto Sangyo University: Kyoto, Japan, 1987, pp. 252–265.

    Google Scholar 

  24. Nakamura, R., Baumjohann, W., Runov, A., and Asano, Y., Thin current sheets in the magnetotail observed by cluster, Space Sci. Rev., 2006, vol. 122, pp. 29–38.

    Article  Google Scholar 

  25. Neishtadt, A.I., On the change in the adiabatic invariant on crossing a separatrix in systems with two degrees of freedom, J. Appl. Math. Mech., 1987, vol. 51, no. 5, pp. 586–592.

    Article  Google Scholar 

  26. Nosé, M., Ieda, A., and Christon, S.P., Geotail observations of plasma sheet ion composition over 16 years: On variations of average plasma ion mass and O+ triggering substorm model, J. Geophys. Res., 2009, no. A7, pp. A07 223–A07 235. https://doi.org/10.1029/2009JA014203

  27. Panov, E.V., Buchner, J., Franz, M., Korth, A., Savin, S.P., Rème, H., and Fornaçon, K.-H., High-latitude Earth’s magnetopause outside the cusp: Cluster observations, J. Geophys. Res., 2008, vol. 113, no. A1, pp. A01 220–A01 241. https://doi.org/10.1029/2006JA012123

    Article  Google Scholar 

  28. Petrukovich, A.A., Artemyev, A.V., Malova, H.V., Nakamura, R., Popov, V.Yu., and Zelenyi, L.M., Place of embedded thin current sheet in the Earth’s magnetotail, J. Geophys. Res., 2011, vol. 116, A00 I25. https://doi.org/10.1029/2010JA015749

    Article  Google Scholar 

  29. Pritchett, P.L. and Coroniti, F.V., Formation and stability of the self-consistent one-dimensional tail current sheet, J. Geophys. Res., 1992, vol. 97, no. A11, pp. 16 773–16 787.

    Article  Google Scholar 

  30. Pulkkinen, T.I., Baker, D.N., Owen, C.J., Gosling, J.T., and Murthy, N., Thin current sheets in the deep geomagnetotail, Geophys. Res. Lett., 1993, vol. 20, pp. 2427–2430.

    Article  Google Scholar 

  31. Runov, A., Sergeev, V.A., Nakamura, R., Baumjohann, W., et al., Local structure of the magnetotail current sheet: 2001 cluster observations, Ann. Geophys., 2005, vol. 23, pp. 1–16.

    Article  Google Scholar 

  32. Runov, A., Sergeev, V.A., Nakamura, R., et al., Local structure of the magnetotail current sheet: 2001 cluster observations, Ann. Geophys., vol. 24, no. 1, pp. 247–262.

  33. Sauvaud, J.-A., Louarn, P., Fruit, G., et al., Case studies of the dynamics of ionospheric ions in the Earth’s magnetotail, J. Geophys. Res., 2004, vol. 109, pp. A01 212–A01 227. https://doi.org/10.1029/2003JA009996

    Article  Google Scholar 

  34. Sergeev, V.A., Mitchell, D.G., Russell, C.T., and Williams, D.J., Structure of the tail plasma/current sheet at 11 Re and its changes in the course of a substorm, J. Geophys. Res., 1993, vol. 98, no. A10, pp. 17 345–17 365.

    Article  Google Scholar 

  35. Sitnov, M.I., Zeleny, L.M., Malova, H.V., and Sharma, A.S., Thin current sheet embedded within a thicker plasma sheet: Self-consistent kinetic theory, J. Geophys. Res., 2000, vol. 105, no. A6, pp. 13 029–13 044.

    Article  Google Scholar 

  36. Sonnerup, B.U.Ö., Adiabatic particle orbits in a magnetic null sheet, J. Geophys. Res., 1971, vol. 76, no. 34, pp. 8211–8222.

    Article  Google Scholar 

  37. Speiser, T.W., Particle trajectories in model current sheets. 1. Analytical solutions, J. Geophys. Res., 1965, vol. 70, no. 17, pp. 4219–4226.

    Article  Google Scholar 

  38. Syrovatskii, S.I., Formation of current sheets in a plasma with a frozen-in strong magnetic field, Sov. J. Exp. Theor. Phys., 1971, vol. 33, no. 5, pp. 933–940.

    Google Scholar 

  39. Zaslavskii, G.M. and Sagdeev, R.Z., Vvedenie v nelineinuyu fiziku: ot mayatnika do turbulentnosti i khaosa (Introduction to Nonlinear Physics: From the Pendulum to Turbulence and Chaos), Moscow: Nauka, 1988.

  40. Zelenyi, L.M., Sitnov, M.I., Malova, H.V., and Sharma, A.S., Thin and superthin ion current sheets. Quasi-adiabatic and nonadiabatic models, Nonlinear Proc. Geophys., 2000, vol. 7, pp. 127–139.

    Article  Google Scholar 

  41. Zelenyi, L.M., Malova, H.V., Popov, V.Yu., Delcourt, D., and Sharma, A.S., Nonlinear equilibrium structure of thin currents sheets: Influence of electron pressure anisotropy, Nonlinear Proc. Geophys., 2004, vol. 11, no. 1, pp. 71–80.

    Article  Google Scholar 

  42. Zelenyi, L.M., Malova, H.V., Popov, V.Yu., Delcourt, D.C., Ganushkina, N.Yu., and Sharma, A.S., “Matreshka” model of multilayered current sheet, Geophys. Res. Lett., 2006, vol. 33, pp. L05 105–L05 109. https://doi.org/10.1029/2005GL025117

    Article  Google Scholar 

  43. Zelenyi, L., Oka, M., Malova, H., Fujimoto, M., Delcourt, D., and Baumjohann, W., Particle acceleration in Mercury’s magnetosphere, Space Sci. Rev., 2007, vol. 132, pp. 593–609. https://doi.org/10.1007/s11214-007-91693-3

    Article  Google Scholar 

  44. Zelenyi, L.M., Malova, Kh.V., Artemyev, A.V., Popov, V.Yu., and Petrukovich, A.A., Thin current sheets in collisionless plasma: Equilibrium structure, plasma instabilities, and particle acceleration, Plasma Phys. Rep., 2011, vol. 37, no. 2, pp. 118–160.

    Article  Google Scholar 

  45. Zelenyi, L.M., Malova, Kh.V., Grigorenko, E.E., and Popov, V.Yu., Thin current sheets: from the work of Ginzburg and Syrovatskii to the present day, Phys.-Usp., 2016, vol. 59, no. 11, pp. 1057–1090.

    Article  Google Scholar 

Download references

Funding

The work by A.A. Petrukovich was supported by the state program Plasma. Kh.V. Malova received partial support from the Russian Foundation for Basic Research (project nos. 16-02-00479 and 19-02-00957), as well as the ISSI Int. Team 405 “Current Sheets, Turbulence, Structures, and Particle Acceleration in the Heliosphere.” V.Yu. Popov received partial support from Programs 28 and I.24 of the Presidium of the Russian Academy of Sciences. The work by E.E. Grigorenko was partially supported by the Volkswagen Foundation (project no. Az90312).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. I. Domrin or Kh. V. Malova.

Additional information

Translated by O. Pismenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domrin, V.I., Malova, K.V., Popov, V.Y. et al. Influence of Oxygen Ions on the Structure of the Thin Current Sheet in the Earth’s Magnetotail. Geomagn. Aeron. 60, 171–183 (2020). https://doi.org/10.1134/S0016793220020048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793220020048

Navigation