Skip to main content
Log in

Role of Oxygen Ions in the Structure of the Current Sheet of the Near-Earth Magnetotail

  • SPACE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A numerical model is used to study the possibility of a thin current sheet formation in the near-Earth magnetotail in the growth phase of a substorm for a wide range of parameters of longitudinal countermoving ion flows that create current sheet. The simulation results make it possible to conclude that the current sheet can be formed by oxygen ion flows of ionospheric origin in cases where the proton fluxes can be neglected or they are rather weak. Such conditions are realized in the Earth’s magnetosphere during periods of increased geomagnetic activity. In addition, the influence of electron pressure anisotropy on the steady-state configuration of the considered current sheet is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. O. L. Vaisberg, L. A. Avanov, J. L. Burch, and J. H. Waite, Jr., Adv. Space Res. 18 (8), 63 (1996). https://doi.org/10.1016/0273-1177(95)00998-1

    Article  ADS  Google Scholar 

  2. L. M. Kistler, C. Mouikis, E. Möbius, B. Klecker, J. A. Sauvaud, H. Rème, A. Korth, R. Marcucci, M. F. Lundin, G. K. Parks, and A. Balogh, J. Geophys. Res.: Space Phys. 110, A06213 (2005). https://doi.org/10.1029/2004JA010653

  3. L. M. Kistler, C. G. Mouikis, X. Cao, H. Frey, B. Klecker, I. Dandouras, A. Korth, M. F. Marcucci, R. Lundin, M. McCarthy, R. Friedel, and E. Lucek, J. Geophys. Res.: Space Phys. 111, A11222 (2006). https://doi.org/10.1029/2006JA011939

  4. E. A. Kronberg, M. Ashour-Abdalla, I. Dandouras, D. C. Delcourt, E. E. Grigorenko, L. M. Kistler, I. V. Kuzichev, J. Liao, R. Maggiolo, H. V. Malova, K. G. Orlova, V. Peroomian, D. R. Shklyar, Y. Y. Shprits, D. T. Welling, et al., Space Sci. Rev. 184, 173 (2014). https://doi.org/10.1007/s11214-014-0104-0

    Article  ADS  Google Scholar 

  5. E. A. Kronberg, D. Welling, L. M. Kistler, C. Mouikis, P. W. Daly, E. E. Grigorenko, B. Klecker, and I. Dandouras, J. Geophys. Res.: Space Phys. 122, 9427 (2017). https://doi.org/10.1002/2017ja024215

    Article  ADS  Google Scholar 

  6. L. M. Zelenyi, Kh. V. Malova, A. V. Artemyev, V. Yu. Popov, and A. A. Petrukovich, Plasma Phys. Rep. 37, 118 (2011).

    Article  ADS  Google Scholar 

  7. L. M. Zelenyi, Kh. V. Malova, E. E. Grigorenko, and V. Yu. Popov, Phys.–Usp. 59, 1057 (2016).

    Article  Google Scholar 

  8. D. N. Baker, E. W. Hones, Jr., D. T. Young, and J. Birn, Geophys. Res. Lett. 9, 1337 (1982). https://doi.org/10.1029/GL009i012p01337

    Article  ADS  Google Scholar 

  9. W. K. Peterson, R. D. Sharp, E. G. Shelley, R. G. Johnson, and H. Balsiger, J. Geophys. Res.: Space Phys. 86, 761 (1981). https://doi.org/10.1029/JA086iA02p00761

    Article  ADS  Google Scholar 

  10. R. D. Sharp, D. L. Carr, W. K. Peterson, and E. G. Shelley, J. Geophys. Res.: Space Phys. 86, 4639 (1981). https://doi.org/10.1029/JA086iA06p04639

    Article  ADS  Google Scholar 

  11. O. W. Lennartsson, J. Geophys. Res.: Space Phys. 99, 2387 (1994). https://doi.org/10.1029/93JA03201

    Article  ADS  Google Scholar 

  12. M. Nosé, A. T. Y. Lui, S. Ohtani, B. H. Mauk, R. W. McEntire, D. J. Williams, T. Mukai, and K. Yumoto, J. Geophys. Res.: Space Phys. 105, 7669 (2000). https://doi.org/10.1029/1999JA000318

    Article  ADS  Google Scholar 

  13. A. W. Yau, T. Abe, and W. K. Peterson, J. Atmos. Sol.‑Terr. Phys. 69, 1936 (2007). https://doi.org/10.1016/j.jastp.2007.08.010

    Article  ADS  Google Scholar 

  14. A. V. Artemyev, A. A. Petrukovich, L. M. Zelenyi, R. Nakamura, H. V. Malova, and V. Y. Popov, Ann. Geophys. 27, 4075 (2009). https://doi.org/10.5194/angeo-27-4075-2009

    Article  ADS  Google Scholar 

  15. A. V. Artemyev, V. Angelopoulos, A. Runov, and X.‑J. Zhang, J. Geophys. Res.: Space Phys. 125, e2019JA027612 (2020). https://doi.org/10.1029/2019JA027612

  16. O. V. Mingalev, Kh. V. Malova, I. V. Mingalev, M. N. Mel’nik, P. V. Setsko, and L. M. Zelenyi, Plasma Phys. Rep. 44, 899 (2018).

    Article  ADS  Google Scholar 

  17. L. M. Zelenyi, H. V. Malova, V. Y. Popov, D. C. Delcourt, N. Y. Ganushkina, and A. S. Sharma, Geophys. Res. Lett. 33, L05105 (2006). https://doi.org/10.1029/2005GL025117

  18. V. I. Domrin, Kh. V. Malova, V. Yu. Popov, E. E. Grigorenko, and A. A. Petrukovich, Geomagn. Aeron. 60, 173 (2020).

    Article  ADS  Google Scholar 

  19. O. V. Mingalev, I. V. Mingalev, V. S. Mingalev, Kh. V. Malova, A. M. Merzlyi, and O. V. Khabarova, Plasma Phys. Rep. 46, 374 (2020).

    Article  ADS  Google Scholar 

  20. J. D. Huba, G. Joyce, and J. A. Fedder, J. Geophys. Res.: Space Phys. 105, 23035 (2000).

    Article  ADS  Google Scholar 

  21. J. D. Huba, G. Joyce, and J. Krall, Geophys. Res. Lett. 35, L10102 (2008).

  22. J. D. Huba, A. Maute, and G. Crowley, Space Sci. Rev. 212, 731 (2017).

    Article  ADS  Google Scholar 

  23. G. V. Khazanov, A. K. Tripathi, D. Sibeck, E. Himwich, A. Glocer, and R. P. Singhal, J. Geophys. Res.: Space Phys. 120, 9891 (2015). https://doi.org/10.1002/2015JA021728

    Article  ADS  Google Scholar 

  24. P. T. Newell, T. Sotirelis, and S. Wing, J. Geophys. Res.: Space Phys. 114, A09207 (2009). https://doi.org/10.1029/2009JA014326

  25. R. L. Lysak, J. Geophys. Res.: Space Phys. 109, A07201 (2004). https://doi.org/10.1029/2004JA010454

  26. L. I. Rudakov and R. Z. Sagdeev, in Plasma Physics and the Problem of Controlled Thermonuclear Reactions, Ed. by M. A. Leontovich (Pergamon, New York, 1959), Vol. 3, p. 321.

    Google Scholar 

  27. A. I. Morozov and L. S. Solov’ev, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1968), Vol. 2, p. 201.

    Google Scholar 

  28. T. F. Volkov, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1968), Vol. 4, p. 1.

    Google Scholar 

  29. R. M. Kulsrud, in Basic Plasma Physics, Ed. by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983), Vol. 1, p. 115.

    Google Scholar 

  30. V. I. Ilgisonis, Phys. Fluids B 5, 2387 (1993). https://doi.org/10.1063/1.860722

    Article  ADS  Google Scholar 

  31. L. M. Zelenyi, Kh. V. Malova, and V. Yu. Popov, JETP Lett. 78, 296 (2003).

    Article  ADS  Google Scholar 

  32. D. C. Delcourt, H. V. Malova, and L. M. Zelenyi, Geophys. Res. Lett. 33, L06106 (2006). https://doi.org/10.1029/2005GL025463

  33. E. E. Grigorenko, L. M. Zelenyi, G. DiBraccio, V. N. Ermakov, S. D. Shuvalov, H. V. Malova, V. Y. Popov, J. S. Halekas, D. L. Mitchell, and E. Dubinin, Geophys. Res. Lett. 46, 6214 (2019). https://doi.org/10.1029/2019GL082709

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. V. Mingalev, I. V. Mingalev or Kh. V. Malova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mingalev, O.V., Setsko, P.V., Mel’nik, M.N. et al. Role of Oxygen Ions in the Structure of the Current Sheet of the Near-Earth Magnetotail. Plasma Phys. Rep. 48, 242–262 (2022). https://doi.org/10.1134/S1063780X22030096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22030096

Keywords:

Navigation