Skip to main content
Log in

Parameters of the Magnetoactive Layer of the Lithosphere for the Siberian Platform—Transbaikalia Profile Based on WDMAM 2.0 Model Data

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The results of the determination of the depths to the centroid, the top and bottom boundaries of the magnetoactive layer along the meridional profile starting on the Siberian Platform (60° N, 113° E) and ending in Transbaikalia (50° N, 113° E) are presented. The calculations are performed based on analysis of azimuthally averaged Fourier power spectra of the lithospheric geomagnetic field assigned by the global WDMAM 2.0 model. The obtained estimates show that the depth to the top boundary of the magnetoactive layer along the selected profile is ~2.0 km, but the depths to the centroid and the bottom boundary decrease in the southern direction from 16.6 and 37.4 km to 13.6 and 25.0 km, respectively. Comparison of the parameters of the magnetoactive layer to the structure of the lithosphere in the study region and the distribution of depths of earthquake hypocenters makes it possible to determine that the magnetoactive layer approximately coincides with the seismoactive layer for the North Muya region of the Baikal rift. The magnetoactive layer along the entire profile is located within the Earth’s crust; its thickness is directly proportional to the lithospheric thickness and is inversely proportional to the temperature of the upper mantle. The results are consistent with hypotheses of passive formation of the Baikal rift and are interesting for further geological-geophysical studies in this region, in particular, to determine heat flow and to construct substantiated models of lithospheric evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Aboud, E., Alotaibi, A.M., and Saud, R., Relationship between Curie isotherm surface and Moho discontinuity in the Arabian shield, Saudi Arabia, J. Asian Earth Sci., 2016, vol. 128, pp. 42–53. https://doi.org/10.1016/j.jseaes.2016.07.025

    Article  Google Scholar 

  2. Amante, C. and Eakins, B.W., ETOPO1. 1 Arc-minute global relief model: Procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, NOAA, 2009. https://doi.org/10.7289/V5C8276M

  3. Arnaiz-Rodríguez, M.S. and Orihuela, N., Curie point depth in Venezuela and the Eastern Caribbean, Tectonophysics, 2013, vol. 590, pp. 38–51. https://doi.org/10.1016/j.tecto.2013.01.004

    Article  Google Scholar 

  4. Artemieva, I.M., Global 1° × 1° thermal model tc1 for the continental lithosphere: Implications for lithosphere secular evolution, Tectonophysics, 2006, vol. 416, pp. 245–277. https://doi.org/10.1016/j.tecto.2005.11.022

    Article  Google Scholar 

  5. Artyushkov, E.V., Letnikov, F.A., and Ruzhich, V.V., On the development of a new mechanism for the formation of the Baikal Depression, in Geodinamika vnutrikontinental’nykh gornykh oblastei (Geodynamics of Innercontinental Mountain Regions), Novosibirsk: Nauka, 1990, pp. 367–378.

  6. Bansal, A.R., Gabriel, G., Dimri, V.P., and Krawczyk, C.M., Estimation of depth to the bottom of magnetic sources by a modified centroid method for fractal distribution of sources: An application to aeromagnetic data in Germany, Geophysics, 2011, vol. 76, no. 3, pp. L11–L22. https://doi.org/10.1190/1.3560017

    Article  Google Scholar 

  7. Bansal, A.R., Anand, S.P., Rajaram, M., Rao, V.K., and Dimri, V.P., Depth to the bottom of magnetic sources (DBMS) from aeromagnetic data of Central India using modified centroid method for fractal distribution of sources, Tectonophysics, 2013, vol. 603, pp. 155–161. https://doi.org/10.1016/j.tecto.2013.05.024

    Article  Google Scholar 

  8. Bhattacharyya, B.K. and Leu, L.-K., Spectral analysis of gravity and magnetic anomalies due to two-dimensional structures, Geophysics, 1975a, vol. 40, no. 6, pp. 993–1013.

    Article  Google Scholar 

  9. Bhattacharyya, B.K. and Leu, L.-K., Analysis of magnetic anomalies over Yellowstone national park: Mapping of Curie point isothermal surface for geothermal reconnaissance, J. Geophys. Res., 1975b, vol. 80, no. 32, pp. 4461–4465.

    Article  Google Scholar 

  10. Bird, P., An updated digital model of plate boundaries, Geochem. Geophys. Geod., 2003, vol. 4, no. 3. https://doi.org/10.1029/2001GC000252

  11. Blakely, R.J., Potential Theory in Gravity and Magnetic Applications, Cambridge, U.K.: Cambridge University Press, 1996.

    Google Scholar 

  12. Bouligand, C., Glen, J.M.G., and Blakely, J., Mapping Curie temperature depth in the western United States with a fractal model for crustal magnetization, J. Geophys. Res., 2009, vol. 114, B11104. https://doi.org/10.1029/2009JB006494

    Article  Google Scholar 

  13. Duchkov, A.D., Lysak, S.V., Golubev, V.A., Dorofeeva, R.P., and Sokolova, L.S., Heat flow and geothermal field of the Baikal region, Geol. Geofiz., 1999, vol. 40, no. 3, pp. 287–303.

    Google Scholar 

  14. Dyment, J., Lesur, V., Hamoudi, M., Choi, Y., Thebault, E., and Catalan, M., World Digital Magnetic Anomaly Map version 2.0, 2015. http://www.wdmam.org/.

  15. Ferré, E.C., Friedman, S.A., Martín-Hernández, F., Feinberg, J.M., Conder, J.A., and Ionov, D.A., The magnetism of mantle xenoliths and potential implications for sub-Moho magnetic sources, Geophys. Res. Lett., 2013, vol. 40, pp. 105–110. https://doi.org/10.1029/2012GL054100

    Article  Google Scholar 

  16. Ferré, E.C., Friedman, S.A., Martín-Hernández, F., Feinberg, J.M., Till, J.L., Ionov, D.A., and Conder, J.A., Eight good reasons why the uppermost mantle could be magnetic, Tectonophysics, 2014, vols. 624–625, pp. 3–14. https://doi.org/10.1016/j.tecto.2014.01.004

    Article  Google Scholar 

  17. Finn, C.A. and Ravat, D., Magnetic depth estimates and their potential for constraining crustal composition and heat flow in Antarctica, in AGU Fall Meeting, San Francisco, 2004, T11A-1236.

  18. Friedman, S.A., Feinberg, J.M., Ferré, E.C., Demory, F., Martín-Hernández, F., Conder, J.A., and Rochette, P., Craton vs. rift uppermost mantle contributions to magnetic anomalies in the United States interior, Tectonophysics, 2014, vols. 624–625, pp. 15–23. https://doi.org/10.1016/j.tecto.2014.04.023

    Article  Google Scholar 

  19. Gileva, N.A., Mel’nikova, V.I., Radziminovich, N.A., and Déverchère, J., Localization of earthquakes and average crustal characteristics for some areas of the Baikal region, Geol. Geofiz., 2000, vol. 41, no. 5, pp. 629-636.

    Google Scholar 

  20. Golenetskii, S.I., Earthquakes in the south of the Siberian platform according to instrumental seismological observations, Vulkanol. Seismol., 2001, no. 6, pp. 68–77.

  21. Golubev, V.A., Konduktivnyi i konvektivnyi vynos tepla v Baikal’skoi riftovoi zone (Conductive and Convective Heat Transfer in the Baikal Rift Zone), Novosibirsk: Geo, 2007.

    Google Scholar 

  22. Haggerty, S.E., Mineralogical constraints on Curie isotherms in deep crustal magnetic anomalies, Geophys. Res. Lett., 1978, vol. 5, pp. 105–108.

    Article  Google Scholar 

  23. Hsieh, H.H., Chen, C.H., Lin, P.Y., and Yen, H.Y., Curie point depth from spectral analysis of magnetic data in Taiwan, J. Asian Earth Sci., 2014, vol. 90, pp. 26–33. https://doi.org/10.1016/j.jseaes.2014.04.007

    Article  Google Scholar 

  24. Hurt, C.P., Moskowitz, B.M., and Banerjee, S.K., Magnetic properties of rocks and minerals, in Rock Physics and Phase Relations. A Handbook of Physical Constants, AGU Reference Shelf Series, Washington, D.C.: AGU, 1995, vol. 3, pp. 189–204.

    Google Scholar 

  25. Idarraga-Garcia, J. and Vargas, C.A., Depth to the bottom of magnetic layer in South America and its relationship to Curie isotherm, Moho depth and seismicity behavior, Geod. Geodyn., 2018, vol. 9, pp. 93–107. https://doi.org/10.1016/j.geog.2017.09.006

    Article  Google Scholar 

  26. Korhonen, J.K., Fairhead, J.D., Hamoudi, M., et al., Magnetic Anomaly Map of the World (First Edition), Paris: Commission for Geological Map of the World, 2007.

    Google Scholar 

  27. Koulakov, I. and Bushenkova, N., Upper mantle structure beneath the Siberian craton and surrounding areas based on regional tomographic inversion of P and PP travel times, Tectonophysics, 2010, vol. 486, pp. 81–100. https://doi.org/10.1016/j.tecto.2010.02.011

    Article  Google Scholar 

  28. Kozhevnikov, V.M., Seredkina, A.I., and Solovei, O.A., 3D mantle structure of Central Asia from Rayleigh wave group velocity dispersion, Russ. Geol. Geofiz., 2014, vol. 55, no. 10, pp. 1239–1247.

    Article  Google Scholar 

  29. Krylov, S.V., Mandel’baum, M.M., Mishen’kin, P.B., Mishen’kina, R.Z., Petrik, G.V., and Seleznev, V.S., Nedra Baikala (po seismicheskim dannym) (Subsoil of Lake Baikal (According to Seismic Data)), Novosibirsk: Nauka, 1981.

  30. Kuznetsova, K.I., Lukina, N.V., Rebetskii, Yu.L., Mikhailova, A.V., and Kuchai, O.A., Strain of the crust and upper mantle of east Siberia with reference to continental orogenesis, Izv.,Phys. Solid Earth, 2004, vol. 40, no. 7, pp. 543–551.

    Google Scholar 

  31. Laske, G., Masters, G., Ma, Z., and Pasyanos, M., Update on CRUST1.0: A 1-degree global model of Earth’s crust, European Geoscience Union General Assembly, Vienna, Austria, 2013, EGU2013-2658.

    Google Scholar 

  32. Lesur, V., Hamoudi, M., Choi, Y., Dyment, J., and Thébault, E., Building the second version of the World Digital Magnetic Anomaly Map (WDMAM), Earth Planets Space, 2016, vol. 68, no. 1, pp. 1–13.

    Article  Google Scholar 

  33. Li, C.-F. and Wang, J., Variations in Moho and Curie depths and heat flow in Eastern And Southeastern Asia, Mar. Geophys. Res., 2016, vol. 37, no. 1, pp. 1–20. https://doi.org/10.1007/s11001-016-9265-4

    Article  Google Scholar 

  34. Li, C.-F., Lu, Y., and Wang, J., A global reference model of Curie-point depths based on EMAG2, Sci. Rep., 2017, vol. 7, 45129. https://doi.org/10.1038/srep45129

    Article  Google Scholar 

  35. Liu, K.H. and Gao, S.S., Mantle transition zone discontinuities beneath the Baikal rift and adjacent areas, J. Geophys. Res., 2006, vol. 111, B11301. https://doi.org/10.1029/2005JB004099

    Article  Google Scholar 

  36. Maus, S. and Dimri, V.P., Scaling properties of potential fields due to scaling sources, Geophys. Res. Lett., 1994, vol. 21, pp. 891–894.

    Article  Google Scholar 

  37. Maus, S., Gordon, D., and Fairhead, D.J., Curie temperature depth estimation using a selfsimilar magnetization model, Geophys. J. Int., 1997, vol. 129, pp. 163–168.

    Article  Google Scholar 

  38. Maus, S., Barckhausen, U., Berkenbosch, H., et al., EMAG2: A 2-arc-minute resolution Earth magnetic anomaly grid compiled from satellite, airborne and marine magnetic measurements, Geochem. Geophys. Geod., 2009, vol. 10, Q08005. https://doi.org/10.1029/2009GC002471

    Article  Google Scholar 

  39. Mel’nikova, V.I., Gileva, N.A., and Seredkina, A.I., Analysis of the results of seismic observations in the North Muisk tunnel of the Baikal-Amur Mainline, in Materialy XII Mezhdunarodnoi seismologicheskoi shkoly “Sovremennye metody obrabotki i interpretatsii seismologicheskikh dannykh” (Proceedings of the XII International Seismology School “Modern Methods for Processing and Interpretation of Seismological Data”), Alma-Ata, 2017a, pp. 217–219.

  40. Melnikova, V.I., Seredkina, A.I., Radziminovich, Y.B., Melnikov, A.I., and Gileva, N.A., The February 1, 2011 Mw 4.7 earthquake: Evidence of local extension in western Transbaikalia (Eastern Siberia), J. Asian Earth Sci., 2017b, vol. 135, pp. 110–121. https://doi.org/10.1016/j.jseaes.2016.12.031

    Article  Google Scholar 

  41. Molnar, P. and Tapponnier, P., Cenozoic tectonics of Asia: Effects of a continental collision, Science, 1975, vol. 189, pp. 419–426. https://doi.org/10.1126/science.189.4201.419

    Article  Google Scholar 

  42. Nielsen, C. and Thybo, H., No Moho uplift below the Baikal Rift Zone: Evidence from a seismic refraction profile across southern Lake Baikal, J. Geophys. Res., 2009a, vol. 114, B08306. https://doi.org/10.1029/2008JB005828

    Article  Google Scholar 

  43. Nielsen, C. and Thybo, H., Lower crustal intrusions beneath the Southern Baikal Rift Zone: Evidence from full-waveform modelling of wide-angle seismic data, Tectonophysics, 2009b, vol. 470, pp. 298–318. https://doi.org/10.1016/j.tecto.2009.01.023

    Article  Google Scholar 

  44. Novoselova, M.R., Magnetic anomalies of the Baikal rift zone and adjacent areas, Tectonophysics, 1978, vol. 45, pp. 95–100.

    Article  Google Scholar 

  45. Nozharov, P. and Veljovich, D., Paleomagnetic investigation of some rocks from the Carpatho–Balkanides on the territory of Bulgaria (rocks with normal and reversed magnetization), Bulg. Geophys. J., 1983, vol. 9, pp. 130–138.

    Google Scholar 

  46. Okubo, Y. and Matsunaga, T., Curie point depth in northeast Japan and its correlation with regional thermal structure and seismicity, J. Geophys. Res., 1994, vol. 99, no. B11, pp. 22363–22371.

    Article  Google Scholar 

  47. Okubo, Y., Graf, R.J., Hansen, R.O., Ogawa, K., and Tsu, H., Curie point depths of the island of Kyushu and surrounding areas, Japan, Geophysics, 1985, vol. 50, pp. 481–494.

    Article  Google Scholar 

  48. Petit, C. and Déverchère, J., Structure and evolution of the Baikal rift: A synthesis, Geochem. Geophys. Geod., 2006, vol. 7, Q11016. https://doi.org/10.1029/2006GC001265

    Article  Google Scholar 

  49. Pirttijärvi, M., 2D Fourier domain operations, FOURPOT program, 2015. https://wiki.oulu.fi/x/0oU7AQ/.

  50. Radziminovich, N.A., Focal depths of earthquakes in the Baikal region: A review, Izv.,Phys. Solid Earth, 2010, vol. 46, no. 3, pp. 216–229.

    Article  Google Scholar 

  51. Radziminovich, Ya.B., Mel’nikova, V.I., Seredkina, A.I., Gileva, N.A., Radziminovich, N.A., and Papkova, A.A., The Balei earthquake of 6 January 2006 (Mw = 4.5): A rare case of seismic activity in eastern Transbaikalia, Russ.Geol. Geofiz., 2012, vol. 53, no. 10, pp. 1200–1110.

    Google Scholar 

  52. Ravat, D., Constructing full spectrum potential-field anomalies for enhanced geodynamical analysis through integration of surveys from different platforms, in AGU Fall Meeting, San Francisco, USA, 2004, NG44A-03.

  53. Ravat, D., Pignatelli, A., Nicolosi, I., and Chiappini, M., A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data, Geophys. J. Int., 2007, vol. 169, pp. 421–434. https://doi.org/10.1111/j.1365-246X.2007.03305.x

    Article  Google Scholar 

  54. Salazar, J.M., Vargas, C.A., and Leon, H., Curie point depth in the SW Caribbean using the radially averaged spectra of magnetic anomalies, Tectonophysics, 2017, vol. 694, pp. 400–413. https://doi.org/10.1016/j.tecto.2016.11.023

    Article  Google Scholar 

  55. Salem, A., Green, C., Ravat, D., Singh, K.H., East, P., Fairhead, J.D., Morgen, S., and Biegert, E., Depth to Curie temperature across the central Red Sea from magnetic data using the de-fractal method, Tectonophysics, 2014, vols. 624–625, pp. 75–86. https://doi.org/10.1016/j.tecto.2014.04.027

    Article  Google Scholar 

  56. Seredkina, A. and Melnikova, V., Seismotectonic crustal strains of the Mongol–Baikal seismic belt from seismological data, Moment Tensor Solutions—A Useful Tools for Seismotectonics, Dordrecht: Springer, 2018, pp. 497–517. https://doi.org/10.1007/978-3-319-77359-9_22.

  57. Seredkina, A., Melnikova, V., Gileva, N., and Radziminovich, Y., The Mw 4.3 January 17, 2014, earthquake: Very rare seismic event on the Siberian platform, J. Seismol., 2015, vol. 19, no. 3, pp. 685–694. https://doi.org/10.1007/s10950-015-9487-y

    Article  Google Scholar 

  58. Seredkina, A., Kozhevnikov, V., Melnikova, V., and Solovey, O., Seismicity and S-wave velocity structure of the crust and the upper mantle in the Baikal rift and adjacent regions, Phys. Earth Planet. Inter., 2016, vol. 261, pp. 152–160. https://doi.org/10.1016/j.pepi.2016.10.011

    Article  Google Scholar 

  59. Spector, A. and Grant, S., Statistical models for interpreting aeromagnetic data, Geophysics, 1970, vol. 35, pp. 293–302.

    Article  Google Scholar 

  60. Stacey, F.D. and Banerjee, S.K., The Physical Principles of Rock Magnetism, Amsterdam: Elsevier, 1974.

    Google Scholar 

  61. Tanaka, A., Magnetic and seismic constraints on the crustal thermal structure beneath the Kamchatka Peninsula, in Volcanism and Tectonics of the Kamchatka Peninsula and Adjacent Arcs, vol. 172, Washington, D.C.: AGU, 2007, pp. 100–105.

    Google Scholar 

  62. Tanaka, A., Global centroid distribution of magnetized layer from World Digital Magnetic Anomaly Map, Tectonics, 2017, vol. 36, pp. 3248–3253. https://doi.org/10.1002/2017TC004770

    Article  Google Scholar 

  63. Tanaka, A. and Ishikawa, Y., Crustal thermal regime inferred from magnetic anomaly data and its relationship to seismogenic layer thickness: The Japanese islands case study, Phys. Earth Planet. Inter., 2005, vol. 152, pp. 257–266. https://doi.org/10.1016/j.pepi.2005.04.011

    Article  Google Scholar 

  64. Tanaka, A., Okubo, Y., and Matsubayashi, O., Curie point depth based on spectrum analysis of the magnetic anomaly data in east and southeast Asia, Tectonophysics, 1999, vol. 306, pp. 461–470.

    Article  Google Scholar 

  65. Ten Brink, U.S. and Taylor, M.H., Crustal structure of central Lake Baikal: Insight into intracontinental rifting, J. Geophys. Res., 2002, vol. 107, no. B7. https://doi.org/10.1029/2001JB000300

  66. Tiberi, C., Diament, M., Déverchère, J., Petit-Mariani, C., Mikhailov, V., Tikhotsky, S., and Achauer, U., Deep structure of the Baikal rift zone revealed by joint inversion of gravity and seismology, J. Geophys. Res., 2003, vol. 108, no. B3, 2133. https://doi.org/10.1029/2002JB001880

    Article  Google Scholar 

  67. Trifonova, P., Zhelev, Zh., Petrova, T., and Bojadgieva, K., Curie point depths of Bulgarian territory inferred from geomagnetic observations and its correlation with regional thermal structure and seismicity, Tectonophysics, 2009, vol. 473, pp. 362–374. https://doi.org/10.1016/j.tecto.2009.03.014

    Article  Google Scholar 

  68. Tsvetkov, Yu.P., Novikov, K.V., Ivanov, A.A., Filippov, S.V., Brekhov, O.M., and Bondar’, T.N., Depth of occurrence of abnormal magnetic field sources according to ground-based and balloon-borne magnetic data, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2018a, vol. 15, no. 3, pp. 80–87.

    Article  Google Scholar 

  69. Tsvetkov, Y.P., Novikov, K.V., Ivanov, A.A., and Brekhov, O.M., Sources of the lithosphere magnetic field based on magnetic data obtained at different heights, Earth Planets Space, 2018b, vol. 70, id 183. https://doi.org/10.1186/s40623-018-0955-9

  70. Wasilewski, P.J. and Mayhew, M.A., The Moho as a magnetic boundary revisited, Geophys. Res. Lett., 1992, vol. 19, no. 22, pp. 2259–2262.

    Article  Google Scholar 

  71. Wasilewski, P.J., Thomas, H.H., and Mayhew, M.A., The Moho as a magnetic boundary, Geophys. Res. Lett., 1979, vol. 6, pp. 541–544.

    Article  Google Scholar 

  72. Yanovskii, B.M., Zemnoi magnetizm (Terrestrial Magnetism), Leningrad: LGU, 1978.

  73. Zhao, D., Lei, J., Inoue, T., Yamada, A., and Gao, S.S., Deep structure and origin of the Baikal rift zone, Earth Planet. Sci. Lett., 2006, vol. 243, pp. 681–691. https://doi.org/10.1016/j.epsl.2006.01.033

    Article  Google Scholar 

  74. Zorin, Yu.A., Novoselova, M.R., Turutanov, E.Kh., and Kozhevnikov, V.M., Structure of the lithosphere of the Mongolian–Siberian mountainous province, J. Geodyn., 1990, vol. 11, pp. 327–342. https://doi.org/10.1016/0264-3707(90)90015-M

    Article  Google Scholar 

  75. Zorin, Yu.A., Turutanov, E.Kh., Mordvinova, V.V., Kozhevnikov, V.M., Yanovskaya, T.B., and Treussov, A.V., The Baikal rift zone: The effect of mantle plumes on older structure, Tectonophysics, 2003, vol. 371, pp. 153–173. https://doi.org/10.1016/S0040-1951(03)00214-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Seredkina or S. V. Filippov.

Additional information

Translated by L. Mukhortova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seredkina, A.I., Filippov, S.V. Parameters of the Magnetoactive Layer of the Lithosphere for the Siberian Platform—Transbaikalia Profile Based on WDMAM 2.0 Model Data. Geomagn. Aeron. 59, 761–769 (2019). https://doi.org/10.1134/S0016793219060094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793219060094

Navigation