Skip to main content
Log in

Satellite Regional Magnetic Anomalies as a Reflection of the Geological and Geophysical Properties of the Lithosphere (According to Champ Data)

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The possibilities of the use of satellite data to study lithospheric magnetic anomalies in remote and poorly studied regions are analyzed. The experiment uses data from CHAMP satellite measurements of the geomagnetic field at altitudes of ~280–320 km. Maps of the magnetic field over the territories of the North Atlantic Province, the Central Asian Fold Belt, and the Rhodope mountain range (Bulgaria) are given. The possible nature of lithospheric magnetic anomalies and their connection with deep structures and active tectonic processes in the lithosphere of the studied provinces are examined. The interpretation of the obtained maps shows that the lithospheric anomalies of the geomagnetic field are associated with modern, large-scale, geological and tectonic structures of the studied areas. The results are of interest for further complex geological and geophysical studies and the construction of valid models of the evolution of the lithosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Abramova, D.Yu. and Abramova, L.M., Lithospheric magnetic anomalies in Siberia (according to CHAMP satellite measurements), Geol. Geofiz., 2014, vol. 55, pp. 1081–1092.

    Google Scholar 

  2. Abramova, D.Yu., Abramova, L.M., Filippov, S.V., and Frunze, A.Kh., The prospects of satellite measurements for analyzing regional magnetic anomalies, Issled. Zemli Kosmosa, 2011, no. 6, pp. 53–63.

  3. Abramova, D.Yu., Varentsov, I.M., Abramova, L., and Filippov, S.V., Analysis of magnetic lithospheric field anomalies within a geological and geophysical study of crustal–mantle structures in the Carpathians–Balkans region, Geofizika, 2017, no. 2, pp. 71–78.

  4. Allen, R., Nolet, G., Morgan, W., et al., Plume-driven plumbing and crustal formation in Iceland, J. Geophys. Res., 2002, vol. 107, no. B8. https://doi.org/10.1029/2001JB000584

  5. Alvey, A., Gaina, C., Kusznir, N.J., and Torsvik, T.H., Integrated crustal thickness mapping and plate reconstructions for the high Arctic, Earth Planet. Sci. Lett., 2008, vol. 27, pp. 310–321. https://doi.org/10.1016/j.epsl.2008.07.036

    Article  Google Scholar 

  6. Artemieva, I.M. and Mooney, W.D., Thermal thickness and evolution of Precambrian lithosphere: A global study, J. Geophys. Res.: Solid Earth, 2001, vol. 106, no. B8, pp. 16387–16414.

    Article  Google Scholar 

  7. Bijwaard, H. and Spakman, W., Tomographic evidence for a whole-mantle plume below Iceland, Earth Planet. Sci. Lett., 1999, vol. 166, pp. 121–126.

    Article  Google Scholar 

  8. Cotton, F. and Avouac, P., Crust and upper-mantle structure under the Tian Shan from surface wave dispersion, Phys. Earth Planet. Int., 1994, vol. 84, pp. 1–4.

    Article  Google Scholar 

  9. Dachev Kh., Stroezh na zemnata kora v Bolgariya (The Structure of the Earth’s Crust in Bulgaria), Sofia: Tekhnika, 1988.

  10. Didenko, A.N., Kaplun, V.B., Malyshev, Yu.F., and Shevchenko, B.F., The lithospheric structure and Mesozoic geodynamics eastern Central Asian fold belt, Geol. Geofiz., 2010, vol. 51, no. 5, pp. 629–647.

    Google Scholar 

  11. Fahnestock, M., Abdalati, W., Joughin, I., Brozena, J., and Gogineni, P., High geothermal heat flow, basal melt, and origin of rapid ice flow in central Greenland, Science, 2001, vol. 294, pp. 2338–2342.

    Article  Google Scholar 

  12. Foulger, G.R. and Anderson, D.L., A cool model for the Iceland hotspot, J. Volcanol. Geotherm. Res., 2005, vol. 141, pp. 1–22. https://doi.org/10.1016/j.jvolgeores.2004.10.007

    Article  Google Scholar 

  13. Funck, T. and Hopper, J.R., Crustal structure, in Tectonostratigraphic Atlas of the Northeast Atlantic Region, Hopper, J.R., Funck, T., Stoker, M., et al., Eds., Copenhagen: Geological Survey of Denmark and Greenland (GEUS), 2014, pp. 69–128.

  14. Gaina, C., Gernigon, L., and Ball, P., Palaeocene–Recent plate boundaries in the ne Atlantic and the formation of the Jan Mayen microcontinent, J. Geol. Soc. London, 2009, pp. 601–616. https://doi.org/10.1144/0016-76492008-112

  15. Gao, R., Huang, D., and Lu, D., Deep seismic reflection profile across the juncture zone between the Tarim Basin and the West Kunlun Mountains, Chin. Sci. Bull., 2000, vol. 45, pp. 2281–2285.

    Article  Google Scholar 

  16. Gao, G., Kang, G., Li, G., Bai, C., and Wu, Y., An analysis of crustal magnetic anomaly and Curie surface in West Himalayan syntaxis and adjacent area, Acta Geod. Geophys., 2017, vol. 52, no. 3, pp. 407–420.https://doi.org/10.1007/s40328-016-0179-z

    Article  Google Scholar 

  17. Golovkov, V.P., Zvereva, T.I., and Chernova, T.A., Space–time modeling of the main magnetic field by combined methods of spherical harmonic analysis and natural orthogonal components, Geomagn. Aeron. (Engl. Transl.), 2007, vol. 47, no. 2, pp. 256–262.

  18. Goodwin, A.M., Principles of Precambrian Geology, New York: Elsevier, 1996.

    Google Scholar 

  19. Hemant, K. and Maus, S., Geological modeling of the new CHAMP magnetic anomaly maps using a geographical information system technique, J. Geophys. Res., 2005, vol. 110, pp. 1–23.

    Article  Google Scholar 

  20. Henriksen, N., Geological History of Greenland—Four Billion Years of Earth Evolution, Copenhagen: Geological Survey of Denmark and Greenland (GEUS), 2008.

  21. Henriksen, N., Higgins, A.K., Kalsbeek, F., and Pulvertaft, T.C.R., Greenland from Archaean to Quaternary. Descriptive text to the Geological Map of Greenland 1 : 2 500 000, Geol. Greenland Surv. Bull., 2000, pp. 93–185.

  22. Huang, J. and Zhao, D., High-resolution mantle tomography of China and surrounding regions, J. Geophys. Res., 2006, vol. 111, pp. 1–21.

    Google Scholar 

  23. Ivanov, R., The deep-seated Central-Rhodope Nappe and the interference tectonics of the Rhodope crystalline basement, Geol. Balc., 1981, vol. 11, no. 3, pp. 47–66.

    Google Scholar 

  24. Kontorovich, A.E., Epov, M.I., Burshtein, L.M., Kaminskii, V.D., Kurchikov, A.R., Malyshev, N.A., Prishchepa, O.M., Safronov, A.F., Stupakova, A.V., and Suprunenko, O.I., Geology, hydrocarbon resources of the Russian Arctic shelf, and its exploration prospects, Geol. Geofiz., 2010, vol. 51, no. 1, pp. 7–17.

    Google Scholar 

  25. Kosarev, G.L., Petersen, N.V., Vinnik, L.P., and Roecker, S.W., Receiver functions for the Tien Shan analog broadband network: Contrasts in the evolution of structures across the Talasso–Fergana fault, J. Geophys. Res., 1993, vol. 98, pp. 4437–4448.

    Article  Google Scholar 

  26. Larsen, L.M. and Watt, W.S., Episodic volcanism during break-up of the North Atlantic: Evidence from the East Greenland plateau basalts, Earth Planet. Sci. Lett., 1985, vol. 73, pp. 105–116. https://doi.org/10.1016/0012-821X(85)90038-X

    Article  Google Scholar 

  27. Lebedev, S., Boonen, J., and Trampert, J., Seismic structure of Precambrian lithosphere: New constraints from broadband surface-wave dispersion, Lithos, 2009, vol. 109, no. 1, pp. 96–111.

    Article  Google Scholar 

  28. Lysak, S.V., Thermal evolution, geodynamics, and current geothermal activity of the Chinese lithosphere, Geol. Geofiz., 2009, vol. 50, pp. 1058–1071.

    Google Scholar 

  29. Maus, S., Rother, M., Holme, R., Lühr, H., Olsen, N., and Haak, V., First scalar magnetic anomaly map from CHAMP satellite data indicates weak lithospheric field, Geophys. Res. Lett., 2002, vol. 29, no. 10, pp. 45-1–47-4. https://doi.org/10.1029/2001GL013685

  30. Maus, S., Barckhausen, U., Berkenbosch, H., et al., EMAG2: A 2-arc min resolution Earth magnetic anomaly grid compiled from satellite, airborne, and marine magnetic measurements, Geochem. Geophys. Geosyst., 2009, vol. 10, no. 8, Q08005. https://doi.org/10.1029/2009GC002471

    Article  Google Scholar 

  31. Orlyuk, M.I. and Pashkevich, I.K., Deep sources of regional magnetic anomalies: Tectonotypes and link with transcrust faults, Geofiz. Zh., 2012, vol. 34, no. 4, pp. 224–234.

    Google Scholar 

  32. Pecherskii, D.M. and Genshaft, Yu.S., Petromagnetism of the continental lithosphere and the origin of regional magnetic anomalies: A review, Russ. J. Earth Sci., 2001, vol. 3, no. 2, pp. 97–124. http://elpub.wdcb.ru/journals/ rjes/rus/v03/rje01059/rje01059.htm.

    Article  Google Scholar 

  33. Reigber, C., Lühr, H., and Schwintzer, P., CHAMP mission status, Adv. Space Res., 2002, vol. 30, no. 2, pp. 129–134. https://doi.org/10.1016/S0273-1177(02)00276-4

    Article  Google Scholar 

  34. Rickers, F., Fichtne, A., and Trampert, J., The Iceland–Jan Mayen plume system and its impact on mantle dynamics in the North Atlantic region: Evidence from full-waveform inversion, Earth Planet. Sci. Lett., 2013, vol. 367, pp. 39–51.

    Article  Google Scholar 

  35. Søager, N. and Holm, P.M., Extended correlation of the Paleogene Faroe Islands and East Greenland plateau basalts, Lithos, 2009, vol. 107, nos. 3–4, pp. 205–215. https://doi.org/10.1016/j.lithos.2008.10.002

    Article  Google Scholar 

  36. Tanaka, A., Okubo, Y., and Matsubayashi, O., Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia, Tectonophysics, 1999, vol. 306, nos. 3–4, pp. 461–470.

    Article  Google Scholar 

  37. Trond, H., Torsvik, H., Amundsen, E.F., Trønnes, R.G., and Doubrovine, P.V., Continental crust beneath southeast Iceland, Proc. Natl. Acad. Sci. U. S. A., A., 2015, vol. 112, no. 15, pp. 1818–1827.

  38. Wessel, P. and Smith, W.H.F., The Generic Mapping Tools. Technical Reference and Cookbook Version 4.2, 2007. http://gmt.soest.hawaii.edu.

  39. Wortel, M.J.R. and Spakman, W., Subduction and slab detachment the Mediterranean–Carpathian region, Science, 2000, vol. 290, no. 5498, pp. 1910–1917.

    Article  Google Scholar 

  40. Yakovlev, A.V., Bushenkova, N.A., Kulakov, I.Yu., and Dobretsov, N.L., The structure of the upper mantle of the Arctic region according to regional seismotomography data, Geol. Geofiz., 2012, vol. 53, pp. 1261–1272.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Cand. Sci. (Minerol.) L.M. Abramova for valuable advice and assistance with this study and to N.I. Volkova for her help with data processing and systematization.

The GMT program was used to build the geomagnetic field maps (Wessel and Smith, 2007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Yu. Abramova or S. V. Filippov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abramova, D.Y., Filippov, S.V. Satellite Regional Magnetic Anomalies as a Reflection of the Geological and Geophysical Properties of the Lithosphere (According to Champ Data). Geomagn. Aeron. 59, 479–487 (2019). https://doi.org/10.1134/S0016793219040029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793219040029

Navigation