Skip to main content
Log in

Anomalous Lithospheric Magnetic Field over the Indo-Asian Collision Territory According to CHAMP Satellite Data

  • USE OF SPACE INFORMATION ABOUT THE EARTH STUDYING CATASTROPHIC NATURAL PROCESSES FROM SPACE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The distribution of the lithospheric magnetic anomalies over the territory of the Tibetan Himalayan highlands, the Western and Eastern Himalayan syntaxes, and part of the Hindustan Peninsula, obtained from measurements on the German Earth satellite CHAMP (Challenging Minisatellite Payload) in different years of its mission, is studied. The lithospheric magnetic anomalies maps for the modulus of the full vector Ta and for the horizontal component Xa at different satellite flight levels are presented. The accordance of lithospheric magnetic anomalies maps to the regional geological and tectonic data and regional geophysics is considered. The anomalous magnetic field sign inversion over the northern part of the Indian Plate is explained as a possible effect of mantle heating, the rise of the Curie isotherm, and the loss of the initial magnetization of the earth’s lower crust. A series of split-level maps of magnetic anomalies are compared with each other, and the degree of their similarity is estimated. To illustrate the expediency of separation lithospheric magnetic anomalies directly from satellite measurements and to demonstrate the difference between maps of regional lithospheric and near-surface anomalies, a Ta map was constructed based on the data from the EMAG2 database of the WDMAM model at a 4 km level. The results of the work show that the identified magnetic anomalies over the Indo-Asian collision region are adequately consistent with the existing regional geological, tectonic, and geophysical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Abramova, D.Yu. and Abramova, L.M., Lithospheric magnetic anomalies in the territory of Siberia (from measurements by the CHAMP satellite), Russ. Geol. Geophys., 2014, vol. 55, pp. 854–863.

    Article  Google Scholar 

  2. Abramova, D.Yu., Filippov, S.V., Abramova, L.M., Varentsov, I.M., and Lozovskii, I.N., Changes of lithospheric magnetic anomalies with altitude (according to the CHAMP satellite), Geomagn. Aeron., 2016, vol. 56, no. 2, pp. 239–248.

  3. Abramova, D.Yu., Filippov, S.V, and Abramova, L.M., Possible use of satellite geomagnetic observations in geological and tectonic studies of lithosphere structure, Izv., Atmos. Ocean. Phys., 2020a, vol. 56, no. 12, pp. 1695–1704. https://doi.org/10.1134/S0001433820120324

    Article  Google Scholar 

  4. Abramova, D.Yu., Abramova, L.M., Varentsov, Iv.M., and Lozovskii, I.N., Reflection of East European tectonics in lithospheric magnetic anomalies of the CHAMP satellite mission, in Voprosy teorii i praktiki geologicheskoi interpretatsii gravitatsionnykh, magnitnykh i elektricheskikh polei: Materialy 47-i sessii Mezhd. nauchn. seminara im. D.G. Uspenskogo–V.N. Strakhova (Issues in the Theory and Practice of Geological Interpretation of Gravitational, Magnetic, and Electric Fields: Proceedings of the 47th Session of the International Uspenskii–Strakhov Seminar), Voronezh: Nauchnaya kniga, 2020b, pp. 3–7.

  5. Abramova, D.Yu., Filippov, S.V., and Abramova, L.M., Lithospheric magnetic anomalies of the eastern part of the Arctic Ocean as images of tectonic structures, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 9, pp. 1021–1028.

    Article  Google Scholar 

  6. Bai, D., Unsworth, M.J., Meju, M.A., Ma, X., Teng, J., Kong, X., Sun, Y., Sun, J., Wang, L., Jiang, C., Zhao, C., Xiao, P., and Liu, M., Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging, Nat. Geosci. Lett., 2010, vol. 3, pp. 358–362. https://doi.org/10.1038/NGEO830SH

    Article  Google Scholar 

  7. Golovkov, V.P., Zvereva, T.I., and Chernova, T.A., Space–time modeling of the main magnetic field by combined methods of spherical harmonic analysis and natural orthogonal components, Geomagn. Aeron., 2007, vol. 47, no. 2, pp. 256–262.

  8. Hemant, K. and Maus, S., Geological modeling of the new champ magnetic anomaly maps using a geographical information system technique, J. Geophys. Res., 2005, vol. 110, pp. 1–23.

    Google Scholar 

  9. Hemant, K. and Mitchell, A., Magnetic field modeling and interpretation of the Himalayan–Tibetan Plateau and adjoining north Indian Plains, Tectonophysics, 2009, vol. 487, pp. 87–99.

    Article  Google Scholar 

  10. Hemant, K., Maus, S., and Haak, V., Interpretation of CHAMP crustal field anomaly maps using a geographical information system (GIS) technique, in Earth Observation with CHAMP: Results from Three Years in Orbit, 2005, pp. 249–254.

  11. Huang, J. and Zhao, D., High-resolution mantle tomography of China and surrounding regions, J. Geophys. Res., 2006, vol. 111, B09305. https://doi.org/10.1029/2005JB004066

    Article  Google Scholar 

  12. Koulakov, I. and Sobolev, S., A tomographic image of Indian lithosphere break-off beneath the Pamir–Hindukush region, Geophys J. Int., 2006, vol. 164, pp. 425–440.

    Article  Google Scholar 

  13. Lei, J., Zhou, H., and Zhao, D., 3-D velocity structure of P-wave in the crust and upper-mantle beneath Pamir and adjacent region, Chin. J. Geophys., 2002, vol. 45, pp. 802–811.

    Article  Google Scholar 

  14. Lowes, F., Geomagnetic spectrum, spatial, in Encyclopedia of Geomagnetism and Paleomagnetism, Gubbins, D, Herrero-Bervera, E, Eds., Berlin: Springer, 2007, pp. 350–353.

    Google Scholar 

  15. Maus, S., Barckhausen, U., Berkenbosch, H., Bournas, N., Brozena, J., Childers, V., Dostaler, F., Fairhead, J.D., Finn, C., von Frese, R.R.B., Gaina, C., Golynsky, S., Kucks, R., Lühr, H., Milligan, P., Mogren, S., et al., EMAG2: A 2-arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements, Geochem. Geophys. Geosyst., 2009, vol. 10, no. 8, Q08005. https://doi.org/10.1029/2009GC002471

    Article  Google Scholar 

  16. Mechie, J., Yuan, X., Schurr, B., Schneider, F., Sippl, C., Ratschbacher, L., Minaev, V., Gadoev, M., Oimahmadov, I., Abdybachaev, U., Moldobekov, B., Orunbaev, S., and Negmatullaev, S., Crustal and uppermost mantle velocity structure along a profile across the Pamir and southern Tien Shan as derived from project TIPAGE wide-angle seismic data, Geophys. J. Int., 2012, vol. 188, pp. 385–407.

    Article  Google Scholar 

  17. Molnar, P., England, P., and Martinod, J., Mantle dynamics, the uplift of the Tibetan Plateau, and the Indian monsoon, Rev. Geophys., 1987, vol. 31, pp. 357–396.

    Article  Google Scholar 

  18. Negredo, A., Replumaz, A., Villasenor, A., and Guillot, S., Modeling the evolution of continental subduction processes in the Pamir–Hindu Kush region, Earth Planet Sci. Lett., 2007, vol. 259, pp. 212–225. https://doi.org/10.1016/j.epsl.04.043

    Article  Google Scholar 

  19. Nelson, K., Zhao, W., and Brown, L., Partially molten middle crust beneath southern Tibet: Synthesis of Project INDEPTH results, Science, 1996, pp. 1684–1696.

  20. Nurgaliev, D.K., Ravilova, N.N., and Schukin, Yu.K., Changing geological environment: Spatiotemporal interactions of endogenous and exogenous processes, Geofiz. Vestn., 2008, no. 3, pp. 5–10.

  21. Royden, L., Burchfie, B., King, R., Wang, E., Chen, Z., Shen, F., and Liu, Y., Surface deformation and lower crustal flow in eastern Tibet, Science, 1997, vol. 276, pp. 788–790.

    Article  Google Scholar 

  22. Shchukin, Yu.K., Problems of deep geology in regional geophysical research, in Vtoraya Vserossiiskaya shkola–seminar po elektromagnitnym zondirovaniyam Zemli (Second All-Russian School and Seminar on Electromagnetic Sensing of the Earth), Moscow: Maks press, 2005, pp. 21–30.

  23. Sobel, E., Schoenbohm, L., Chen, J., Thiede, R., Stockli, D., Sudo, M., and Strecker, M., Late Miocene–Pliocene deceleration of dextral slip between Pamir and Tarim: Implications for Pamir orogenesis, Earth Planet Sci. Lett., 2011, vol. 304, nos. 3–4, pp. 369–378. https://doi.org/10.1016/j.epsl.2011.02.012

    Article  Google Scholar 

  24. Tapponnier, P., Peltzer, G., and Armijo, R., On the mechanics of the collision between India and Asia, Geol. Soc. London: Spec. Publ., 1986, vol. 19, pp. 113–157. https://doi.org/10.1144/GSL.SP.1986.019.01.07

    Article  Google Scholar 

  25. Tapponnier, P., Zhiqin, X., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G., and Jingsui, Y., Oblique stepwise rise and growth of the Tibetan plateau, Science, 2001, vol. 294, pp. 1671–1677.

    Article  Google Scholar 

  26. Treloar, N.A., Shive, P.N., and Fountain, D.M., Viscous remanence acquisition in deep crustal rocks, EOS, Trans. Am. Geophys. Union, 1986, vol. 67, p. 266.

    Google Scholar 

  27. Wang, Q., Zhang, P., Freymueller, J., and Bilham, R., and Larson, K., Present-day crustal deformation in China constrained by global positioning system measurements, Science, 2001, vol. 294, pp. 574–577.

    Article  Google Scholar 

  28. Wessel, P. and Smith, W.H.F., The generic mapping tools. Technical reference and cookbook version 4.2, 2007. http://gmt.soest.hawaii.edu.

  29. Yang, H., Teng, J., Zhang, X., Sun, R., and Ke, X., Features of the deep geophysical field beneath the west Himalayan syntaxis, Progr. Geophys., 2009, vol. 24, pp. 1975–1986. https://doi.org/10.3969/j.issn.1004-2903.2009.06.007

    Article  Google Scholar 

  30. Yin, A. and Harrison, T., Geologic evolution of the Himalayan–Tibetan orogeny, Annu. Rev. Earth Planet. Sci., 2000, vol. 28, pp. 211–280.

    Article  Google Scholar 

  31. Zhang, P., Wang, M., Gan, W., Burgmann, R., Molnar, P., Wang, Q., Niu, Z., Sun, J., Wu, J., Hanrong, S., and Xinzhao, Y., Continuous deformation of the Tibetan plateau from global positioning system data, Geology, 2004, vol. 32, pp. 809–812. https://doi.org/10.1130/G20554.1

    Article  Google Scholar 

  32. Zhao, W. and Nelson, K., INDEPTH project team. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet, Nature, 1993, vol. 366, pp. 557–559.

    Article  Google Scholar 

Download references

Funding

This work was carried out as part of the State Task of the Schmidt Institute of Physics of the Earth Geoelectromagnetic Research Center, Russian Academy of Sciences (GEMRC IPE RAS) no. 0144-2019-0021 and supported by the current Russian–Chinese grant of the Russian Foundation for Basic Research (RFBR) no. 21-55-53041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Abramova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abramova, D.Y., Abramova, L.M. & Varentsov, I.M. Anomalous Lithospheric Magnetic Field over the Indo-Asian Collision Territory According to CHAMP Satellite Data. Izv. Atmos. Ocean. Phys. 58, 1077–1085 (2022). https://doi.org/10.1134/S000143382209002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143382209002X

Keywords:

Navigation