Skip to main content
Log in

Contributions from Different-Type Active Regions Into the Total Solar Unsigned Magnetic Flux

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Data set acquired by the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) during 2010–2017 allowed us to classify active regions (ARs) into three categories: A-type— regular bipolar ARs; U-type—unipolar spots; B-type—irregular ARs, violating either Hale polarity law or Joy’s law or having the leading spot less than the main following spot. A separate subset of anti-Hale ARs was formed. We selected 1494 ARs in total and found the following: (i) Pearson correlation coefficient r between the total unsigned flux for a given category and the International Sunspot Number smoothly decreases with transition from A-type (r = 0.57) to B-type (r = 0.53) to anti-Hale ARs (r = 0.31) to U-type (r = 0.18); (ii) yearly contributions into the total flux from categories also gradually decreases: from 50–70% from A-type ARs to 20–40% from B‑type ARs to 10–20% from U-type ARs to 5–11% from anti-Hale ARs. (iii) At the beginning of the solar minimum, the fraction of flux from anti-Hale groups increased from 5 to 9% and amount of flux per magnetogram was constant at about 1021 Mx level. The data are compatible with a concept that generation of the magnetic field on the Sun occurs as a united process in a non-linear dynamical dissipative system, i.e., global and local (fluctuation) dynamos are inseparable and operate together. The observed enhancement of the anti-Hale flux during the solar maximum can be due to the combined mechanisms of global mean-field and local fluctuation dynamos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Abramenko, V.I., Yurchyshyn, V.B., and Goode, P.R., Observational signatures of the small-scale dynamo in the quiet Sun, ASP Conf. Ser., 2012, vol. 455, pp. 17–24.

    Google Scholar 

  2. Babcock, H.W., The topology of the Sun’s magnetic field and the 22-year cycle, Astrophys. J., 1961, vol. 133, pp. 572–587.

    Article  Google Scholar 

  3. Batchelor, G.K., On the spontaneous magnetic field in a conducting liquid in turbulent motion, Proc. R. Soc. London, Ser. A, 1950, vol. 201, pp. 405–416.

    Article  Google Scholar 

  4. Bobra, M.G., Sun, X., Hoeksema, J.T., et al., The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: SHARPs—Space-Weather HMI Active Region Patches, Sol. Phys., 2014, vol. 289, no. 9, pp. 3549–3578.

    Article  Google Scholar 

  5. Brandenburg, A. and Subramanian, K., Astrophysical magnetic fields and nonlinear dynamo theory, Phys. Rep., 2005, vol. 417, pp. 1–209.

    Article  Google Scholar 

  6. Brandenburg, A., Sokoloff, D., and Subramanian, K., Current status of turbulent dynamo theory: From large-scale to small-scale dynamos, Space Sci. Rev., 2012, vol. 169, pp. 123–157.

    Article  Google Scholar 

  7. Cattaneo, F., On the origin of magnetic fields in the quiet photosphere, Astrophys. J., 1999, vol. 515, pp. 39–42.

    Article  Google Scholar 

  8. Charbonneau, P., Dynamo models of the solar cycle, Living Rev. Sol. Phys., 2010, vol. 7, id 3.

  9. Couvidat, S., Schou, J., Hoeksema, J.T., et al., Observables processing for the Helioseismic and Magnetic Imager instrument on the Solar Dynamics Observatory, Sol. Phys., 2016, vol. 291, pp. 1887–1938.

    Article  Google Scholar 

  10. Elsasser, W.M., Hydromagnetic dynamo theory, Rev. Mod. Phys., 1956, vol. 28, pp. 135–163.

    Article  Google Scholar 

  11. González Hernández, I., Komm, R., van Driel-Gesztelyi, L., et al., Subsurface flows associated with non-Joy oriented active regions: A case study, J. Phys.: Conf. Ser., 2013, vol. 440, id 012050.

  12. Goode, P.R., Yurchyshyn, V.B., Cao, W., et al., Highest resolution observations of the quietest Sun, Astrophys. J., vol. 714, pp. 31–35.

  13. Grotrian, W. and Kunzel, H., Über den Induktionsfluβ durch die Sonnenflecken, Z. Astrophys., 1950, vol. 28, pp. 28–42.

    Google Scholar 

  14. Hagenaar, H., Ephemeral regions on a sequence of full-disk Michelson Doppler imager magnetograms, Astrophys. J., 2001, vol. 555, pp. 448–461.

    Article  Google Scholar 

  15. Hagenaar, H.J., Schrijver, C.J., and Title, A.M., The properties of small magnetic regions on the solar surface and the implications for the solar dynamo(s), Astrophys. J., 2003, vol. 584, pp. 1107–1119.

    Article  Google Scholar 

  16. Hale, G.E. and Nicholson, S.B., The law of sun-spot polarity, Astrophys. J., 1925, vol. 62, pp. 270–301.

    Article  Google Scholar 

  17. Hale, G.E., Ellerman, F., Nicholson, S.B., and Joy, A.H., The magnetic polarity of sun-spots, Astrophys. J., 2003, vol. 49, pp. 153–186.

    Article  Google Scholar 

  18. Harvey, K.L. and Zwaan, C., Properties and emergence of bipolar active regions, Sol. Phys., 1993, vol. 148, pp. 85–118.

    Article  Google Scholar 

  19. Hazra, G., Choudhuri, A.R., and Miesch, M.S., A theoretical study of the build-up of the Sun’s polar magnetic field by using a 3D kinematic dynamo model, Astrophys. J., 2017, vol. 835, id 39.

  20. Hoeksema, J.T., Liu, Y., Hayashi, K., et al., The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: Overview and performance, Sol. Phys., 2014, vol. 289, pp. 3483–3530.

    Article  Google Scholar 

  21. Illarionov, E., Tlatov, A., and Sokoloff, D., The properties of the tilts of bipolar solar regions, Sol. Phys., 2015, vol. 290, pp. 351–361.

    Article  Google Scholar 

  22. Ishikawa, R. and Tsuneta, S., Comparison of transient horizontal magnetic fields in a plage region and in the quiet Sun, Astron. Astrophys., 2009, vol. 495, no. 1, pp. 607–612.

    Article  Google Scholar 

  23. Jin, C.L. and Wang, J.X., The latitude distribution of small-scale magnetic elements in solar cycle 23, Astrophys. J., 2012, vol. 745, id 39.

  24. Jin, C.L., Wang, J.X., Song, Q., Zhao, H., et al., The Sun’s small-scale magnetic elements in solar cycle 23, Astrophys. J., 2012, vol. 731, id 37.

  25. Kazantsev, A.P., Enhancement of a magnetic field by a conducting fluid, Sov. Phys. JETP, 1968, vol. 26, pp. 1031–1034.

    Google Scholar 

  26. Kitchatinov, L.L., The solar dynamo: inferences from observations and modeling, Geomagn. Aeron. (Engl. Transl.), 2014, vol. 54, no. 7, pp. 867–876.

  27. Krause, F. and Raedler, K.H., Mean-Field Magnetohydrodynamics and Dynamo Theory, Oxford: Pergamon, 1980.

    Google Scholar 

  28. Kutsenko, A.S. and Abramenko, V.I., Using SDO/HMI magnetograms as a source of the solar mean magnetic field data, Sol. Phys., 2016, vol. 291, pp. 1613–1623.

    Article  Google Scholar 

  29. Leighton, R.B., Transport of magnetic fields on the Sun, Astrophys. J., 1964, vol. 140, pp. 1547–1564.

    Article  Google Scholar 

  30. Lemen, J.R., Title, A.M., Akin, D.J., et al., The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO), Sol. Phys., 2012, vol. 275, pp. 17–40.

    Article  Google Scholar 

  31. Li, J. and Ulrich, R.K., Long-term measurements of sunspot magnetic tilt angles, Astrophys. J., 2012, vol. 758, id 115.

  32. Lites, B.W. and Skumanich, A., Martínez Pillet, V., Vector magnetic fields of emerging solar flux. I. Properties at the site of emergence, Astron. Astrophys., 1998, vol. 333, pp. 1053–1068.

    Google Scholar 

  33. Lites, B.W., Kubo, M., Socas-Navarro, H., et al., The horizontal magnetic flux of the quiet-Sun internetwork as observed with the Hinode spectro-polarimeter, Astrophys. J., 2008, vol. 672, no. 2, pp. 1237–1253.

    Article  Google Scholar 

  34. Liu, Y., Hoeksema, J.T., Scherrer, P.H., et al., Comparison of line-of-sight magnetograms taken by the Solar Dynamics Observatory/Helioseismic and Magnetic Imager and Solar and Heliospheric Observatory/ Michelson Doppler Imager, Sol. Phys., 2012, vol. 279, no. 1, pp. 295–316.

    Article  Google Scholar 

  35. Livingston, W., Harvey, J.W., Malanushenko, O.V., et al., Sunspots with the strongest magnetic fields, Sol. Phys., 2006, vol. 239, pp. 41–68.

    Article  Google Scholar 

  36. McClintock, B.H., Norton, A.A., and Li, J., Re-examining sunspot tilt angle to include anti-hale statistics, Astrophys. J., 2014, vol. 797, no. 2, id 130.

  37. Miesch, M.S., The dynamo dialectic: An inside look at the current solar minimum, ASP Conf. Ser., 2010, vol. 428, pp. 29–37.

  38. Miesch, M.S., The solar dynamo, Philos. Trans. R. Soc., A, 2012, vol. 370, pp. 3049–3069.

  39. Moffat, H.K., Magnetic Field Generation in Electrically Conducting Fluids, Cambridge: Cambridge University Press, 1978.

    Google Scholar 

  40. Nagovitsyn, Yu.A. and Pevtsov, A.A., On the presence of two populations of sunspots, Astrophys. J., 2016, vol. 833, pp. 94–99.

    Article  Google Scholar 

  41. Nagovitsyn, Yu.A., Pevtsov, A.A., and Osipova, A.A., Two populations of sunspots: Differential rotation, Astron. Lett., 2018, vol. 44, pp. 202–211.

    Article  Google Scholar 

  42. Nelson, N.J., Brown, B.P., Brun, A.S., et al., Magnetic wreaths and cycles in convective dynamos, Astrophys. J., 2013, vol. 762, id 73.

  43. Norton, A.A., Jones, E.H., Linton, M.G., et al., Magnetic flux emergence and decay rates for preceder and follower sunspots observed with HMI, Astrophys. J., 2017, vol. 842, id 3.

  44. Olemskoy, S.V. and Kitchatinov, L.L., Grand minima and north–south asymmetry of solar activity, Astrophys. J., 2013, vol. 777, id 71.

  45. Ossendrijver, M., The solar dynamo, Astron. Astrophys. Rev., 2003, vol. 11, pp. 287–367.

    Article  Google Scholar 

  46. Parker, E.N., The formation of sunspots from the solar toroidal field, Astrophys. J., 1955, vol. 121, pp. 491–507.

    Article  Google Scholar 

  47. Pevtsov, A.A., Berger, M.A., Nindos, A., et al., Magnetic helicity, tilt, and twist, Space Sci. Rev., 2014, vol. 186, pp. 285–324.

    Article  Google Scholar 

  48. Pietarila Graham, J., Cameron, R., and Schüssler, M., Turbulent small-scale dynamo action in solar surface simulations, Astrophys. J., 2010, vol. 714, no. 2, pp. 1606–1616.

    Article  Google Scholar 

  49. Pipin, V.V., Moss, D., Sokoloff, D., et al., Reversals of the solar magnetic dipole in the light of observational data and simple dynamo models, Astron. Astrophys., 2014, vol. 567, id A90.

  50. Rempel, M., Numerical simulations of quiet Sun magnetism: On the contribution from a small-scale dynamo, Astrophys. J., 2014, vol. 789, id 132.

  51. Scherrer, P.H., Schou, J., Bush, R.I., et al., The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO), Sol. Phys., 2012, vol. 275, pp. 207–227.

    Article  Google Scholar 

  52. Schober, J., Schleicher, D., Federrath, C., et al., Magnetic field amplification by small-scale dynamo action: Dependence on turbulence models and Reynolds and Prandtl numbers, Phys. Rev. E, 2012, vol. 85, id 026303.

  53. Schou, J., Scherrer, P.H., Bush, R.I., et al., Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO), Sol. Phys., 2012, vol. 275, pp. 229–259.

    Article  Google Scholar 

  54. Schrijver, C.J. and Harvey, K.L., The photospheric magnetic flux budget, Sol. Phys., 1994, vol. 150, pp. 1–18.

    Article  Google Scholar 

  55. Sokoloff, D.D., Khlystova, A., and Abramenko, V., Solar small-scale dynamo and polarity of sunspot groups, Mon. Not. R. Astron. Soc., 2015, vol. 451, pp. 1522–1527.

    Article  Google Scholar 

  56. Sokoloff, D.D., Yushkov, E.V., and Lukin, A.S., Small-scale magnetic helicity and nonlinear stabilization of the dynamo, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, pp. 844–848.

  57. Steenbeck, M., Krause, F., and Rädler, K.-H., Berechnung der mittleren Lorentz-Feldstärke \(\overline {v \times b} \) für ein elektrisch leitendes Medium in turbulenter, durch Coriolis–Kräfte beeinflußter Bewegung, Z. Naturforsch., A: Astrophys., Phys. Phys. Chem., 1966, vol. 21, pp. 369–376.

    Google Scholar 

  58. Stenflo, J.O. and Kosovichev, A.G., Bipolar magnetic regions on the Sun: Global analysis of the SOHO/MDI data set, Astrophys. J., 2012, vol. 745, id 129.

  59. Tsuneta, S., Ichimoto, K., Katsukawa, Y., et al., The solar optical telescope for the Hinode Mission: An overview, Sol. Phys., 2008, vol. 249, pp. 167–196.

    Article  Google Scholar 

  60. van Driel-Gesztelyi, L. and Green, L.M., Evolution of active regions, Living Rev. Sol. Phys., 2015, vol. 12, id 1.

  61. Vögler, A. and Schüssler, M., A solar surface dynamo, Astron. Astrophys., 2007, vol. 465, pp. L43–L46.

    Article  Google Scholar 

  62. Wang, Y.M. and Sheeley, N.R., Average properties of bipolar magnetic regions during sunspot cycle 21, Sol. Phys., 1989, vol. 124, pp. 81–100.

    Article  Google Scholar 

  63. Yeo, K.L., Solanki, S.K., and Krivova, N.A., Intensity contrast of solar network and faculae, Astron. Astrophys., 2013, vol. 550, id A95.

  64. Zeldovich, Y.B. and Ruzmaikin, A.A., Reviews of topical problems: The hydromagnetic dynamo as the source of planetary, solar, and galactic magnetism, Sov. Phys. Usp., 1987, vol. 30, no. 6, pp. 494–506.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Abramenko.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abramenko, V.I., Zhukova, A.V. & Kutsenko, A.S. Contributions from Different-Type Active Regions Into the Total Solar Unsigned Magnetic Flux. Geomagn. Aeron. 58, 1159–1169 (2018). https://doi.org/10.1134/S0016793218080224

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793218080224

Navigation