Geomagnetism and Aeronomy

, Volume 58, Issue 1, pp 1–8 | Cite as

Index of the Long-Term Influence of Sporadic Solar Activity on Cosmic Ray Modulation

  • A. V. Belov
  • R. T. Gushchina


Coronal mass ejections (CMEs) not only produce Forbush effects but contribute to long-term modulations of cosmic rays. That makes coronal ejections the main sporadic manifestations of the solar activity, which should be considered in modulation models. In this paper, a new version of the CME-index is proposed based on a comparison of the data from satellite coronographs with Forbush effects and long-term variations of cosmic rays.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atac, T., Time variation of the flare index during the 21st solar cycle, Astrophys. Space Sci., 1987, vol. 135, no. 1, pp. 201–205.CrossRefGoogle Scholar
  2. Balabin, Yu.V., Belov, A.V., and Gushchina, R.T., Annual variations of cosmic rays in the 24th solar cycle, Bull. Russ. Acad. Sci.: Phys., 2015, vol. 79, no. 5, pp. 623–627. doi 10.3103/S1062873815050093Google Scholar
  3. Belov, A.V., Forbush effects and their connection with solar, interplanetary and geomagnetic phenomena, in Universal Heliophysical Processes: Proc. Int. Astronomical Union, Gopalswamy, N. and Webb, D., Eds., 2009, vol. 257, pp. 439–450.Google Scholar
  4. Belov, A.V., Gushchina, R.T., and Sirotina, I.V., The spectrum of cosmic rays variations during 19–22 solar cycles, in Proc. 23rd ICRC, Calgary, 1993, vol. 3, pp. 605–609.Google Scholar
  5. Belov, A.V., Gushchina, R.T., Obridko, V.N., Shel’ting, B.D., and Yanke, V.G., Connection of the long-term modulation of cosmic rays with the parameters of the global magnetic field of the Sun, Geomagn. Aeron. (Engl. Transl.), 2002, vol. 42, no. 6, pp. 693–700.Google Scholar
  6. Belov, A.V., Gushchina, R.T., Obridko, V.N., Shel’ting, B.D., and Yanke, V.G., Simulation of the modulation of galactic cosmic rays during solar activity cycles 21–23, Bull. Russ. Acad. Sci.: Phys., 2007, vol. 71, no. 7, pp. 974–976.CrossRefGoogle Scholar
  7. Belov, A., Abunin, A., Abunina, M., Eroshenko, E., Oleneva, V., Yanke, V., Papaioannou, A., Mavromichalaki, H., Gopalswamy, N., and Yashiro, S., Coronal mass ejections and non-recurrent Forbush decreases, Sol. Phys., 2014, vol. 289, pp. 3949–3960.CrossRefGoogle Scholar
  8. Cane, H., Coronal mass ejections and Forbush decreases, Space Sci. Rev., 2000, vol. 93, pp. 55–77.CrossRefGoogle Scholar
  9. Cliver, E.W., Richardson, I.G., and Ling, A.G., Solar drivers of 11-yr and long-term cosmic ray modulation, Space Sci. Rev., 2013, vol. 176, nos. 1–4, pp. 3–19.CrossRefGoogle Scholar
  10. Forbush, S.E., Worldwide cosmic ray variations, 1937–52, J. Geophys. Res., 1954, vol. 59, pp. 525–542.CrossRefGoogle Scholar
  11. Gushchina, R.T., Belov, A.V., Obridko, V.N., and Shel’ting, B.D., Extrema of long-term modulation of the cosmic ray intensity in the last five solar cycles, Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 4, pp. 438–444.CrossRefGoogle Scholar
  12. Gushchina, R.T., Belov, A.V., Eroshenko, E.A., Obridko, V.N., Paouris, E., and Shel’ting, B.D., Cosmic ray modulation during the solar activity growth phase of cycle 24, Geomagn. Aeron. (Engl. Transl.), 2014, vol. 54, no. 4, pp. 430–436.CrossRefGoogle Scholar
  13. Gushchina, R.T., Belov, A.V., Tlatov A.G., and Yanke, V.G., Coronal holes in the long-term modulation of cosmic rays, Geomagn. Aeron. (Engl. Transl.), 2016, vol. 56, no. 3, pp. 257–263.CrossRefGoogle Scholar
  14. Hoeksema, J.T. and Scherrer, P.H., The solar magnetic field 1976–through1985, UAG Report 94, WDC-A for Solar Terrestrial Physics, 1986.Google Scholar
  15. Howard, T.A. and Harrison, R.A., Stealth coronal mass ejections: A perspective, Sol. Phys., 2012, vol. 285, nos. 1–2, pp. 269–280.Google Scholar
  16. Scholar
  17. Scholar
  18. Krymskii, G.F., Krivoshapkin, P.A., Gerasimova, S.K., Grigor’ev, V.G., and Mamrukova, V.P., Neutral layer and particle drift in longperiod CRvariations, Bull. Russ. Acad. Sci.: Phys., 2001, vol. 65, no. 3, pp. 353–356.Google Scholar
  19. Lockwood, J.A., Forbush decreases in the cosmic ray variations, Space Sci. Rev., 1971, vol. 12, pp. 658–715.CrossRefGoogle Scholar
  20. Mavromichalaki, H. and Paouris, E., Long-term cosmic ray variability and the CME-index, Adv. Astron., 2012, id 607172.Google Scholar
  21. Michalek, G., Gopalswamy, N., Lara, A., and Yashiro, S., Properties and geoeffectiveness of halo coronal mass ejections, Space Weather, 2006, vol. 4, no. 10.Google Scholar
  22. Nikolaeva, N.S., Yermolaev, Yu.I., and Lodkina, I.G., Dependence of geomagnetic activity during magnetic storms on the solar wind parameters for different types of streams, Geomagn. Aeron. (Engl. Transl.), 2011, vol. 51, no. 1, pp. 49–65.CrossRefGoogle Scholar
  23. Paouris, E., Ineffectiveness of narrow CMEs for cosmic ray modulation, Sol. Phys., 2013, vol. 284, no. 2, pp. 589–597.CrossRefGoogle Scholar
  24. Paouris, E., Mavromichalaki, H., Belov, A., Gushchina, R., and Yanke, V., Galactic cosmic ray modulation and the last solar minimum, Sol. Phys., 2012, vol. 280, no. 1, pp. 255–271.CrossRefGoogle Scholar
  25. Paouris, E., Mavromichalaki, H., Belov, A., Eroshenko, E., and Gushchina, R., The solar polar field in the cosmicray intensity modulation, J. Phys. Conf. Ser., 2015, vol. 632, 012074.CrossRefGoogle Scholar
  26. Richardson, I.G. and Cane, H.V., Solar wind drivers of geomagnetic storms during more than four solar cycles, J. Space Weather Space Clim., 2012, vol. 2.Google Scholar
  27. Stozhkov, Yu.I., Svirzhevskii, N.S., Bazilevskaya, G.A., Svirzhevskaya, A.K., Kvashnin, A.N., Krainev, M.B., Makhmutov, V.S., and Klochkova, T.I., Cosmic ray fluxes at the curve maximum of the absorption in the atmosphere and on the atmospheric boundaries (1957–2007), Preprint of Lebedev Physical Institute, Russ. Acad. Sci., Moscow, 2007.Google Scholar
  28. Yashiro, S., Gopalswamy, N., Michalek, G., St Cyr O.C., Plunkett, S.P., Rich, N.B., and Howard, R.A., A catalog of white light coronal mass ejections observed by the SOHO spacecraft, J. Geophys. Res., 2004, vol. 109, A07105. doi 10.1029/2003JA010282Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave PropagationRussian Academy of Sciences (IZMIRAN)TroitskRussia

Personalised recommendations