Skip to main content
Log in

Contribution of the Solar Constant Variations to Calculations of Insolation for the Holocene Period

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Insolation is one of the most important factors that affect the changes in the global climate and weather. Therefore, its accurate calculation is a relevant question of modern climatology. In this study, we present the calculation of the annual insolation over the course of the Holocene, taking into account the variations of the solar constant estimated from the radiocarbon content in tree rings (Vieira et al., 2011). It has been found that the insolation changes in latitudinal belts form a trend determined by the Earth’s spatial position; the latitudinal gradient of insolation increases from the poles to the equator with time. The variations in integral insolation over the sphere and integral insolations over the hemispheres have a minor trend caused by the orbital component, but they are mostly determined by the solar constant variations (its contribution to the insolation amplitude variations is ten times greater than the contribution of orbital parameters). These results can be used to interpret global climate changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berger, A., Long-term variations of daily insolation and quaternary climatic change, J. Atmos. Sci., 1978, vol. 35, pp. 463–467.

    Article  Google Scholar 

  • Berger, A. and Loutre, M.F., Insolation values for the climate of the last 10 million years, Quat. Sci. Rev., 1991, vol. 10, no. 4, pp. 297–317.

    Article  Google Scholar 

  • Bol’shakov, V.A., Novaya kontseptsiya orbital’noi teorii paleoklimata (New Concept of the Orbital Theory of Paleoclimate), Moscow: MGU, 2003 [in Russian].

    Google Scholar 

  • Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G., Persistent solar influence on North Atlantic climate during the Holocene, Science, 2001, vol. 294, pp. 2130–2136.

    Article  Google Scholar 

  • Fedorov, V.M., Latitudinal variability of incoming solar radiation in various time cycles, Dokl. Earth Sci., 2015, vol. 460, no. 1, pp. 96–99.

    Article  Google Scholar 

  • Haigh, J.D., Climate variability and the influence of the sun, Science, 2001, vol. 294, pp. 2109–2111.

    Article  Google Scholar 

  • Huybers, P. and Eisenman, I., Integrated summer insolation calculations, NOAA/NCDC Paleoclimatology Program Data Contribution # 2006-079, 2006. http://eisenman.ucsd.edu/code/daily_insolation.m.

    Google Scholar 

  • Kopp, G., An assessment of the solar irradiance record for climate studies, J. Space Weather Space Clim., 2014, vol. 4, A14.

    Google Scholar 

  • Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., and Levrard, B., A long-term numerical solution for the insolation quantities of the Earth, Astron. Astrophys., 2004, vol. 428, pp. 261–285.

    Article  Google Scholar 

  • Le Verrier, U.J.J., Recherches astronomiques, Manuscrit des textes imprimés dans les “Annales de l’Observatoire impérial de Paris”, vol. 1, Paris, 1855.

    Google Scholar 

  • Lipenkov, V.Ya., Raynaud, D., Loutre, M.F., and Duval, P., On the potential of coupling air content and O2/N2 from trapped air for establishing an ice core chronology tuned on local insolation, Quat. Sci. Rev., 2011, vol. 30, pp. 3280–3289.

    Article  Google Scholar 

  • Milankovich, M., Matematicheskaya klimatologiya i astronomicheskaya teoriya kolebanii klimata (Mathematical Climatology and the Astronomical Theory of Climatic Changes), Leningrad: GONTI, 1939 [in Russian].

    Google Scholar 

  • Stevens, M.J. and North, G.R., Detection of the climate response to the solar cycle, J. Atmos. Sci., 1996, vol. 53, no. 18, pp. 2594–2608.

    Article  Google Scholar 

  • Vieira, L.E.A., Solanki, S.K., Krivova, N.A., and Usoskin, I., Evolution of the solar irradiance during the Holocene, Astron. Astrophys., 2011, vol. 531, A6.

    Google Scholar 

  • Volobuev, D.M., Central Antarctic climate response to the solar cycle, Clim. Dyn., 2014, vol. 42, nos. 9–10, pp. 2469–2475.

    Article  Google Scholar 

  • Willson, R.C. and Mordvinov, A.V., Secular total solar irradiance trend during solar cycles 21–23, Geophys. Res. Lett., 2003, vol. 30, no. 5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Skakun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skakun, A.A., Volobuev, D.M. Contribution of the Solar Constant Variations to Calculations of Insolation for the Holocene Period. Geomagn. Aeron. 57, 902–905 (2017). https://doi.org/10.1134/S0016793217070180

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793217070180

Navigation