Skip to main content
Log in

Determination of the Average Latitudinal Temperature by Linear Transformation of Astronomical Insolation

  • OPTICAL MODELS AND DATABASES
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Time series of multiyear average temperature, obtained at 927 Northern Hemisphere weather stations for the period 1955–2014, are compared with the known data on astronomical insolation for the same time interval and location. It is shown that the annually averaged astronomical insolation as a function of latitude, subject to linear transformation, should be considered as the average latitudinal temperature. This result is justified using a regression of the compared data and by grouping meteorological stations. Our estimates of the increment of the average latitudinal temperature in the period 1985–2014 as compared with those in 1955–1984, as well as the contribution to the temperature variations from the components determined by astronomical insolation and by stochastic processes in the geosphere, do not contradict the well-known estimates, which verifies the introduced linear transformation of astronomical insolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. The Second Assessment Report of Roshydromet on Climate Change and Its Consequences on the Territory of the Russian Federation. General summary (Roshydromet, Moscow, 2014) [in Russian].

  2. G. V. Gruza and E. Ya. Ran’kova, Observed and E-xpected Climate Changes in Russia: Air Temperature (VNIIGMI-MCD, Obninsk, 2012) [in Russian]

  3. GISS Surface Temperature Analysis. http://data. giss.nasa.gov/gistemp/. Cited December 1, 2018.

  4. J. Hansen, R. Ruedy, M. Sato, and K. Lo, “Global surface temperature change,” Rev. Geophys. 48 (2010). https://doi.org/10.1029/2010RG000345

  5. Global Average Anomalies. www.ncdc.noaa.gov/oa/ climate/research/anomalies/index.htm. Cited December 1, 2018.

  6. T. M. Smith, R. Reynolds, T. C. Peterson, and J. Lawrimore, “Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006),” J. Climatol. 21, 2283–2296 (2008).

    Article  ADS  Google Scholar 

  7. Archive of the University of East Anglia. http://www.metoffice.gov.uk, http://www.cru.uea.ac.uk. Cited June 1, 2017.

  8. P. D. Jones, D. H. Lister, T. J. Osborn, C. Harpham, M. Salmon, and C. P. Morice, “Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010,” J. Geophys. Res. 117 (D5) (2012). https://doi.org/10.1029/2011JD017139

  9. G. V. Gruza, E. Ya. Ran’kova, L. K. Kleshchenko, and V. D. Smirnov, “On spatial averaging in climate monitoring problems,” Problemy Ekologich. Monit. Modelir. Ekosistem. XXV, 42–71 (2013).

    Google Scholar 

  10. R. S. Vose, D. Wuertz, T. C. Peterson, and P. D. Jones, “An intercomparison of trends in surface air temperature analyses at the global, hemispheric and grid-box scale,” Geophys. Rev. Lett. 32 (2005). https://doi.org/10.1029/2005GL023502

  11. P. Jones, M. New, D. E. Parker, S. Martin, and I. G. Rigor, “Surface air temperature and its changes over the past 150 years,” Rev. Geophys. 37 (1999). https://doi.org/10.1029/1999RG900002

  12. P. D. Jones and T. M. L. Wigley, “Estimation of global temperature trends: What’s important and what isn’t,” Clim. Change 100, 59–69 (2010).

    Article  ADS  Google Scholar 

  13. L. S. Gandin, Objective Analysis of Meteorological Fields (Gidrometeoizdat, Leningrad, 1965) [in Russian].

    Google Scholar 

  14. J. E. Hansen and S. Lebedeff, “Global trends of measured surface air temperature,” J. Geophys. Res. 92, 13345–13372 (1987).

    Article  ADS  Google Scholar 

  15. V. G. Dmitriev, “About a feature of optimal (and other linear) interpolation of hydrometeorological processes and fields,” Navigatsiya Gidrografiya, No. 1, 99–101 (1995).

    Google Scholar 

  16. P. D. Jones and A. Moberg, “Hemispheric and large-scale surface air temperature variations: An extensive revision and an update to 2001,” J. Clim. 16, 206–223 (2003).

    Article  ADS  Google Scholar 

  17. M. I. Budyko, “About the origin of ice epochs,” Meteorol. Gidrol., No. 11, 17–19 (1968).

  18. H. W. Dove, Verbreitung der Wȁrme auf der Oberflȁche der Erde: Erlȁutert durch Isothermen,Thermische Isanomalien und Temperaturcurven (Dietrich Reimer, Berlin, 1852).

    Google Scholar 

  19. S. P. Khromov and M. A. Petrosyants, Meteorology and Hydrology (Moscow State University, Moscow, 1994) [in Russian].

    Google Scholar 

  20. V. P. Zakusilov, T. N. Zadorozhnaya, and R. A. Belkin, “Peculiarities of the longitudinal distribution of climate air temperature parameters in different latitudes in the Northern hemisphere,” in Proc. of the Intern. Conf. “Science–Society Interaction: Problems and Prospects”,2018. P. 26–30.

  21. V. M. Fedorov and P. B. Grebennikov, “Calculation of long-term averages of surface air temperature based on insolation data,” Izv. Atmos. Ocean. Phys. 53 (8), 757–768 (2017).

    Article  Google Scholar 

  22. V. M. Fedorov, “The correlation analysis of the Earth’s insolation and anomalies in surface air temperatures,” Uch. Zapiski RGGMU. No. 45, 151–166 (2016).

  23. V. M. Fedorov and P. B. Grebennikov “Calculation of long term averages of surface air temperature based on insolation data,” Geofiz. Proc. Biosfera 16 (1), 5–24 (2017).https://doi.org/10.21455/GPB2017.1-1

  24. The JPL HORIZONS on-line solar system data and ephemeris computation service provides access to key solar system data and flexible production of highly accurate ephemerides for solar system objects. http://ssd.jpl.nasa.gov. Cited December 1, 2018.

  25. A.S. Monin, Earth Rotation and Climate (Gidrometeoizdat, Leningrad, 1972) [in Russian].

    Google Scholar 

  26. Solar radiation and climate. http://www.solar-climate.com/sc/bd01.htm. Cited December 1, 2018.

  27. V. M. Fedorov, Earth’s Insolation and Modern Climate Change (Fizmatlit, Moscow, 2018) [in Russian].

    Google Scholar 

  28. S. M. Semenov, “Greenhouse effect: Discovery, concept development, role in formation of global climate and its human-induced changes,” Fund. Pprikl. Klimatologiya 2, 103–126 (2015).

    Google Scholar 

  29. Climate Change 2013: Physical Scientific Basis, ed. by T.F. Stoker, D. TSin’, Plattner, M.B. Tignor, S.K. Allen, D. Boshung, A. Nauels, Yu. Sya, V. Beks, and P.M. Midglej (Cambridge University Press, Cambridge; New York, 2013).

Download references

Funding

This work is performed as part of the State Budget theme of research and development no. АААА-А17-117013050030-1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Tartakovsky, N. N. Cheredko or V. G. Maximov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Bazhenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tartakovsky, V.A., Cheredko, N.N. & Maximov, V.G. Determination of the Average Latitudinal Temperature by Linear Transformation of Astronomical Insolation. Atmos Ocean Opt 33, 210–215 (2020). https://doi.org/10.1134/S102485602002013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102485602002013X

Keywords:

Navigation