Skip to main content
Log in

Formation of density cavities with a nonstationary electric field in the zone of auroral field-aligned currents

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The formation of small-scale density cavities with a nonstationary electric field, which are registered in the Earth’s auroral magnetosphere, has been analyzed. It has been indicated that cavities are probably initially caused by quasi-static field-aligned electric currents and currents of kinetic Alfvén waves exceeding threshold values. Urgent variants of the linear and nonlinear stages of density disturbance instabilities have been considered. The determined properties of the parameters of small-scale density cavities and nonstationary electric fields are in agreement with the known experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Artsimovich, L.A. and Sagdeev, R.Z., Fizika plazmy dlya fizikov (Plasma Physics for Physicists), Moscow: Atomizdat, 1979.

    Google Scholar 

  • Belova, N.G., Galeev, A.A., Sagdeev, R.Z., and Sigov, Yu.S., Phenomenon of Electric Field Collapse in Double Layers, Pis’ma Zh. Eksp. Teor. Fiz., 1980, vol. 31, no. 9, pp. 551–555.

    Google Scholar 

  • Bespalov, P.A. and Misonova, V.G., The Acceleration of the Magnetospheric Particles Model by Strong Turbulence, Geomagn. Aeron., 1998, vol. 38, no. 4, pp. 148–155 [Geomagn. Aeron. (Engl. Transl.), 1998, vol. 38, pp. 521–525].

    Google Scholar 

  • Bespalov, P.A. and Misonova, V.G., Formation of Energetic Particle Fluxes by Electrostatic Structures in Strongly Disturbed Auroral Magnetosphere, J. Atmos. Sol.-Terr. Phys., 2001, vol. 63, pp. 1753–1762.

    Article  Google Scholar 

  • Bespalov, P.A. and Misonova, V.G., Acceleration of Charged Particle Fluxes by Turbulent Electrostatic Solitary Structure in Auroral Plasma, Adv. Space Res., 2002, vol. 30, pp. 1651–1656.

    Article  Google Scholar 

  • Bespalov, P.A., Misonova, V.G., and Cowley, S.W.H., Field-Aligned Particle Acceleration on Auroral Field Lines by Interaction with Transient Density Cavities Stimulated by Kinetic Alfvén Waves, Ann. Geophys., 2006, vol. 24, pp. 1–17.

    Article  Google Scholar 

  • Borovsky, J.E. and Joyce, G., Numerically Simulated Two-Dimensional Auroral Double Layers, J. Geophys. Res., 1983, vol. 88A, pp. 3116–3126.

    Article  Google Scholar 

  • Carlson, C.W., Pfaff, R.F., and Watzin, J.G., Fast Auroral Snapshot (FAST) Mission, Geophys. Res. Lett., 1998, vol. 25, pp. 2013–2016.

    Article  Google Scholar 

  • Chaston, C.C., Carlson, C.W., Peria, W.J., and Ergun, R.E., FAST Observations of Inertial Alfvén Waves in the Dayside Aurora, Geophys. Res. Lett., 1998, vol. 26, pp. 647–650.

    Article  Google Scholar 

  • Chaston, C.C., Carlson, C.W., and Ergun, R.E., Alfvén Waves, Density Cavities and Electron Acceleration Observed from the FAST Spacecraft, Phys. Scr., 2000, vol. 84, pp. 64–68.

    Article  Google Scholar 

  • Chaston, C.C., Bonnell, J.W., Carlson, C.W., McFaddon, J.P., Ergun, R.E., and Strangeway, R.J., Properties of Small-Scale Alfvén Waves and Accelerated Electrons from FAST, J. Geophys. Res., 2003, vol. 108A; doi: 10.1029/2002JA009420.

  • Chaston, C.C., Bonnell, J.W., Carlson, C.W., McFaddon, J.P., Ergun, R.E., Strangeway, R.J., and Lund, E.J., Auroral Ion Acceleration in Dispersive Alfvén Waves, J. Geophys. Res., 2004, vol. 109, no. A04205; doi: 10.1029/2003JA010053.

  • Carlqvist, P., On the Formation of Double Layers in Plasma, Cosm. Electrodyn., 1972, vol. 3, no. 3, pp. 377–388.

    Google Scholar 

  • Dungey, J.W., Cosmic Electrodynamics, New York: Cambridge Univ. Press, 1958. Translated under the title Kosmicheskaya elektrodinamika, Moscow: Gosatomizdat, 1961.

    Google Scholar 

  • Galeev, A.A. and Sagdeev, R.Z., Nonlinear Plasma Theory, Vopr. Teor. Plazmy, 1973, vol. 7, pp. 303–364.

    Google Scholar 

  • Galeev, A.A. and Sagdeev, R.Z., Current Instabilities and Anomalous Plasma Resistance, Osnovy fiziki plazmy. (Prilozhenie k tomy 2) [Basic Principles of Plasma Physics (Appendix to Volume 2)], Moscow: Energatomizdat, 1984.

    Google Scholar 

  • Genot, V., Louran, P., and Le Queau, D., A Study of the Propagation of Alfvén Waves in the Auroral Density Cavities, J. Geophys. Res., 1999, vol. 104, p. 22649–22656.

    Article  Google Scholar 

  • Genot, V., Louran, P., and Mottez, F., Electron Acceleration by Alfvén Waves in Density Cavities, J. Geophys. Res., 2000, vol. 105, pp. 27611–27620.

    Article  Google Scholar 

  • Genot, V., Louran, P., and Mottez, F., Alfvén Wave Interaction with Inhomogeneous Plasmas: Acceleration and Energy Cascade towards Small Scales, Ann. Geophys., 2004, vol. 22, pp. 2081–2096.

    Article  Google Scholar 

  • Gurevich, A.V., Meerson, B.I., and Rogachevskii, I.V., Kinetic Theory of Stationary Double Layer in Plasma, Fiz. Plazmy, 1985, vol. 11, no. 10, pp. 1213–1222.

    Google Scholar 

  • Kadomtsev, B.B., Kollektivnye yavleniya v plazme (Collective Phenomena in Plasma), Moscow: Nauka, 1976.

    Google Scholar 

  • Kan, J.R. and Lee, L.C., On the Auroral Double Layer Criterion, J. Geophys. Res., 1980, vol. 85A, pp. 788–790.

    Article  Google Scholar 

  • Kan, J.R., Lee, L.C., and Akasofu, S.I., Two-Dimensional Potential Double-Layers and Discrete Aurora, J. Geophys. Res., 1979, vol. 84A, pp. 4305–4315.

    Article  Google Scholar 

  • Khotyaintsev, Y., Ivchenko, N., Stasiewicz, K., and Berthomier, M., Electron Energisation by Alfvén Waves: Freja and Sounding Rocket Observations, Phys. Scr., 2000, vol. 84, pp. 151–153.

    Article  Google Scholar 

  • Kozlovsky, A.E.. and Lyatsky, W.B., Alfvén Wave Generation by Disturbance of Ionospheric Conductivity in the Field-Aligned Current Region, J. Geophys. Res., 1997, vol. 102, pp. 17297–17303.

    Article  Google Scholar 

  • Langmuir, I., The Effect of Space Charge and Residual on Thermonic Currents in High Vacuum, Phys. Rev., 1913, vol. 2, pp. 450–486.

    Article  Google Scholar 

  • Louarn, P., Wahlund, J.-E., Chust, T., de Feraudy, H., Roux, A., Holback, B., Dovner, P.O., Eriksson, A.I., and Holmgre, G., Observations of Kinetic Alfvén Waves by the Freja Spacecraft, Geophys. Res. Lett., 1994, vol. 21, p. 1847.

    Article  Google Scholar 

  • Lysak, R.L. and Lotko, W., On the Kinetic Dispersion Relation for Shear Alfvén Waves, J. Geophys. Res., 1996, vol. 101, pp. 5085–5094.

    Article  Google Scholar 

  • Stasiewicz, K. et al., Small Scale Alfvénic Structure in the Aurora, Space Sci. Rev., 2000a, vol. 92, pp. 423–533.

    Article  Google Scholar 

  • Stasiewicz, K., Lundin, R., and Marklund, G., Stochastic Ion Heating by Orbit Chaotization on Electrostatic Waves and Nonlinear Structures, Phys. Scr., 2000b, vol. 84, pp. 60–63.

    Article  Google Scholar 

  • Streltsov, A. and Lotko, W., Dispersive Field Line Resonances on Auroral Field Lines, J. Geophys. Res., 1995, vol. 100, pp. 19457–19472.

    Article  Google Scholar 

  • Vedenov, A.A. and Ryutov, D.D., Quasilinear Effects in Flux Instabilities, Vopr. Teor. Plazmy., 1972, vol. 6, pp. 3–21.

    Google Scholar 

  • Volosevich, A.V. and Galperin, Yu.I., Nonlinear MHD Theory of Stationary Moving Structures and Knoidal Waves in Auroral and Magnetospheric Plasmas: Observations from Viking and Search from Interball, Czech. J. Phys., 1999, vol. 49, pp. 647–656.

    Google Scholar 

  • Wu, D.J. and Chao, J.K., Recent Progress in Nonlinear Kinetic Alfvén Waves, Nonlinear Processes Geophys., 2004, vol. 11, pp. 631–645.

    Article  Google Scholar 

  • Wu, K. and Seyler, C.E., Instability of Inertial Alfvén Waves in Transverse Sheared Flow, J. Geophys. Res., 2003, vol. 108A, p. 1236; doi:10.1029/2002JA009631.

    Article  Google Scholar 

  • Wygant, J.R., Polar Spacecraft-Based Comparisons of Intense Electric Fields and Poynting Flux near and within the Plasma Sheet Tail Lobe Boundary to UVI Images: An Energy Source for the Auroras, J. Geophys. Res., 2000, vol. 105, pp. 18675–18692.

    Article  Google Scholar 

  • Wygant, J.R. et al., Evidence for Kinetic Alfvén Waves and Parallel Electron Energization at 4–6 Re Altitudes in the Plasma Sheet Boundary Layer, J. Geophys. Res., 2002, vol. 107A, p. 1201; doi:10.1029/2002JA900113.

    Article  Google Scholar 

  • Yadav, L.L., Tiwari, R.S., and Sharma, S.R., Propagation of Ion-Acoustic Double Layer in an Inhomogeneous Plasma, Phys. Scr., 1994, vol. 49, pp. 245–249.

    Article  Google Scholar 

  • Zheleznyakov, V.V., Radioizluchenie Solntsa i planet (Radioemission of the Sun and Planets), Moscow: Nauka, 1964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © P.A. Bespalov, V.G. Misonova, 2011, published in Geomagnetizm i Aeronomiya, 2011, Vol. 51, No. 4, pp. 489–497.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bespalov, P.A., Misonova, V.G. Formation of density cavities with a nonstationary electric field in the zone of auroral field-aligned currents. Geomagn. Aeron. 51, 483–491 (2011). https://doi.org/10.1134/S0016793211040098

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793211040098

Keywords

Navigation