Skip to main content
Log in

3D model of small-scale density cavern formation in the region of auroral field-aligned currents

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

A 3D problem of the formation of small-scale density caverns with a nonstationary electric field in the region of auroral electric currents and kinetic Alfvén wave currents is considered. It is shown that an excess of the electron current velocity over a certain critical value of their thermal velocity is a probable cause of cavern formation. Linear and nonlinear stages of the density cavern formation are considered, and their main parameters are estimated. In the case of comparatively strong magnetic fields, caverns can be formed with comparable longitudinal and transverse (with respect to the magnetic field) scales. The properties of parameters of small-scale density caverns and nonstationary electric field agree with well-known experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akasofu, S.-I. and Chapman, S., Solar-Terrestrial Physics, Oxford University Press, 1972.

    Google Scholar 

  • Belova, N.G., Galeev, A.A., Sagdeev, R.Z., and Sigov, Yu.S., Collapse of the e;ectric field in double layers, JETP Lett., 1980, vol. 31, no. 9, pp. 518–521.

    Google Scholar 

  • Bespalov, P.A. and Mizonova, V.G., The acceleration of the magnetospheric particles model by strong turbulence, Geomagn. Aeron. (Engl. Transl.), 1998, vol. 38, no. 4, pp. 521–525.

    Google Scholar 

  • Bespalov, P.A. and Misonova, V.G., Formation of energetic particle fluxes by electrostatic structures in strongly disturbed auroral magnetosphere, J. Atmos. Sol.-Terr. Phys., 2001, vol. 63, no. 16, pp. 1753–1762.

    Article  Google Scholar 

  • Bespalov, P.A. and Misonova, V.G., Acceleration of charged particle fluxes by turbulent electrostatic solitary structure in auroral plasma, Adv. Space Res., 2002, vol. 30, no. 7, pp. 1651–1656.

    Article  Google Scholar 

  • Bespalov, P.A., Misonova, V.G., and Cowley, S.W.H., Fieldaligned particle acceleration on auroral field lines by interaction with transient density cavities stimulated by kinetic Alfvén waves, Ann. Geophys., 2006, vol. 24, no. 8, pp. 2313–2329.

    Article  Google Scholar 

  • Bespalov, P.A. and Mizonova, V.G., Formation of density cavities with a nonstationary electric field in the zone of auroral field-aligned currents, Geomagn. Aeron. (Engl. Transl.), 2011, vol. 51, no. 4, pp. 483–491.

    Article  Google Scholar 

  • Borovsky, J.E. and Joyce, G., Numerically simulated twodimensional auroral double layers, J. Geophys. Res., 1983, vol. 88, no. A4, pp. 3116–3126.

    Article  Google Scholar 

  • Braginskii, S.I., Plasma transfer phenomenon, in Voprosy teorii plazmy (Questions of the Plasma Theory), Leontovich, M.A., Ed., Moscow: Gosatomizdat, 1963, vol. 1, pp. 183–271.

  • Carlqvist, P., On the formation of double layers in plasma, Cosmic Electrodyn., 1972, vol. 3, no. 3, pp. 377–388.

    Google Scholar 

  • Carlson, C.W., Pfaff, R.F., and Watzin, J.G., Fast Auroral Snapshot (FAST) mission, Geophys. Rev. Lett., 1998, vol. 25, pp. 2013–2016.

    Article  Google Scholar 

  • Chaston, C.C., Carlson, C.W., Peria, W.J., and Ergun, R.E., FAST observations of inertial Alfvén waves in the dayside aurora, Geophys. Rev. Lett., 1998, vol. 26, pp. 647–650.

    Article  Google Scholar 

  • Chaston, C.C., Carlson, C.W., and Ergun, R.E., Alfvén waves, density cavities and electron acceleration observed from the FAST spacecraft, Phys. Scr., 2000, vol. T84, no. 1, pp. 64–68.

    Article  Google Scholar 

  • Chaston, C.C., Bonnell, J.W., Carlson, C.W., McFaddon, J.P., Ergun, R.E., and Strangeway, R.J., Properties of smallscale Alfvén waves and accelerated electrons from FAST, J. Geophys. Res., 2003a, vol. 108, no. A4. doi 10.1029/2002JA009420

    Google Scholar 

  • Chaston, C.C., Bonnell, J.W., Carlson, C.W., McFaddon, J.P., Ergun, R.E., and Strangeway, R.J., Kinetic effects of the acceleration of electrons by small scale Alfvén waves: A FAST case study, Geophys. Rev. Lett., 2003b, vol. 30, no. 6, p. 1289. doi 10.1029/2002GL015777

    Article  Google Scholar 

  • Chaston, C.C., Bonnell, J.W., Carlson, C.W., McFaddon, J.P., Ergun, R.E., Strangeway, R.J., and Lund, E.J., Auroral ion acceleration in dispersive Alfvén waves, J. Geophys. Res., 2004, vol. 109, no. A04205. doi 10.1029/ 2003JA010053

    Google Scholar 

  • Genot, V. and Louran, P., and Le Queau, D., A study of the propagation of Alfvén waves in the auroral density cavities, J. Geophys. Res., 1999, vol. 104, no. A10, pp. 22,649–656.

    Google Scholar 

  • Genot, V., Louran, P., and Mottez, F., Alfvén wave interaction with inhomogeneous plasmas: Acceleration and energy cascade towards small scales, Ann. Geophys., 2004, vol. 22, no. 6, pp. 2081–2096.

    Article  Google Scholar 

  • Goertz, C.K. and Boswell, R.W., Magnetosphere-ionosphere coupling, J. Geophys. Res., 1979, vol. 84, no. A12, pp. 7239–7246.

    Article  Google Scholar 

  • Gurevich, A.V., Meerson, B.I., and Rogachevskii, I.V., Kinetic theory of stationary double layer in plasma, Fiz. Plazmy, 1985, vol. 11, no. 10, pp. 1213–1222.

    Google Scholar 

  • Kan, J.R., Lee, L.C., and Akasofu, S.I., Two-dimensional potential double-layers and discrete aurora, J. Geophys. Res., 1979, vol. 84, no. A8, pp. 4305–4315.

    Article  Google Scholar 

  • Kan, J.R. and Lee, L.C., On the auroral double layer criterion, J. Geophys. Res., 1980, vol. 85, no. A2, pp. 788–790.

    Article  Google Scholar 

  • Kindel, J.M. and Kennel, C.F., Topside current instabilities, J. Geophys. Res., 1971 vol. 76, no. 13, pp. 3055–3078.

    Article  Google Scholar 

  • Kozlovsky, A.E. and Lyatsky, W.B., Alfvén wave generation by disturbance of ionospheric conductivity in the fieldaligned current region, J. Geophys. Res., 1997, vol. 102, no. A8, pp. 17297–17303.

    Article  Google Scholar 

  • Langmuir, I., The effect of space charge and residual on thermonic currents in high vacuum, Phys. Rev., 1913, vol. 2, no. 5, pp. 450–486.

    Article  Google Scholar 

  • Louarn, P., Wahlund, J.-E., Chust, T., de Feraudy, H., Roux, A., Holback, B., Dovner, P.O., Eriksson, A.I., and Holmgre, G., Observations of kinetic Alfvén waves by the FREJA spacecraft, Geophys. Rev. Lett., 1994, vol. 21, no. 17, pp. 1847–1850.

    Article  Google Scholar 

  • Mikhailovskii, A.B., Teoriya plazmennykh neustoichivostei (Theory of Plasma Instabilities), Moscow: Atomizdat, 1970, vol. 1.

    Google Scholar 

  • Nakajima, A., Shiokawa, K., Seki, K., Strangeway, R.J., McFadden, J.P., and Carlson, C.W., Particle and field characteristics of broadband electrons observed by fast satellite during a geomagnetic storm, J. Geophys. Res., 2007, vol. 112, p. A06220. doi 10.1029/2006JA012184

    Google Scholar 

  • Stasiewicz, K., Bellan, P., Chaston, C., et al., Small scale Alfvénic structure in the aurora, Space Sci. Rev., 2000a, vol. 92, nos. 3/4, pp. 423–533.

    Article  Google Scholar 

  • Stasiewicz, K., Lundin, R., and Marklund, G., Stochastic ion heating by orbit chaotization on electrostatic waves and nonlinear structures, Phys. Scr., 2000b, vol. 84, no. 1, pp. 60–63.

    Article  Google Scholar 

  • Volosevich, A.V. and Galperin, Yu.I., Nonlinear MHD theory of stationary moving structures and knoidal waves in auroral and magnetospheric plasmas: Observations from VIKING and search from INTERBALL, Czech. J. Phys., 1999, vol. 49, no. 4a, pp. 647–656.

    Google Scholar 

  • Wu, K. and Seyler, C.E., Instability of inertial Alfvén waves in transverse sheared flow, J. Geophys. Res., 2003, vol. 108, no. A6, p. 1236. doi 10.1029/2002JA009631

    Article  Google Scholar 

  • Wu, D.J. and Chao, J.K., Recent progress in nonlinear kinetic Alfvén waves, Nonlinear Proc. Geop., 2004, vol. 11, nos. 5/6, pp. 631–645.

    Article  Google Scholar 

  • Wygant, J.R., Keiling, A., Cattell, C.A., et al., Evidence for kinetic Alfvén waves and parallel electron energisation at 4-6 Re altitudes in the plasma sheet boundary layer, J. Geophys. Res., 2002, vol. 107, no. A8, p. 1201. doi 10.1029/2002JA900113

    Google Scholar 

  • Yadav, L.L., Tiwari, R.S., and Sharma, S.R., Propagation of ion-acoustic double layer in an inhomogeneous plasma, Phys. Scr., 1994, vol. 49, no. 2, pp. 245–249. doi 10.1088/0031-8949/49/2/019

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Bespalov.

Additional information

Original Russian Text © P.A. Bespalov, V.G. Mizonova, 2015, published in Geomagnetizm i Aeronomiya, 2015, Vol. 55, No. 6, pp. 747–754.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bespalov, P.A., Mizonova, V.G. 3D model of small-scale density cavern formation in the region of auroral field-aligned currents. Geomagn. Aeron. 55, 723–729 (2015). https://doi.org/10.1134/S0016793215050047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793215050047

Keywords

Navigation