Skip to main content
Log in

Effect of zonal E × B plasma drift on electron density in the low-latitude ionospheric F region at a solar activity maximum near vernal equinox

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The variations in the density of the ionospheric F2 layer maximum (NmF2) under the action of the zonal plasma drift perpendicularly to the magnetic (B) and electric (E) fields in the direction geomagnetic west-geomagnetic east have been studied using the three-dimensional nonstationary theoretical model of electron and ion densities (N e and N i ) and temperatures (T e and T i ) in the low-latitude and midlatitude ionospheric F region and plasmasphere. The method of numerical calculations of N e , N i , T e , and T i , including the advantages of the Lagrangian and Eulerian methods, is used in the model. A dipole approximation of the geomagnetic field (B), taking into account the non-coincidence of the geographic and geomagnetic poles and differences between the positions of the Earth’s and geomagnetic dipole centers, is accepted in the calculations. The calculated NmF2 and altitudes of the F2 layer maximum (hmF2) have been compared with these quantities measured at 16 low-latitude ionospheric sounding stations during the geomagnetically quiet period October 11–12, 1958. This comparison made it possible to correct the input model parameters: the NRLMSISE-00 model [O], the meridional component of the neutral wind velocity according to the HWW90 model, and the meridional component of the equatorial plasma drift due to the electric field specified by the empirical model. It has been indicated that the effect of the zonal E × B plasma drift on NmF2 can be neglected under daytime conditions and changes in NmF2 and hmF2 under the action of this drift are insignificant under nighttime conditions north of 25° and south of −26° geomagnetic latitude. The effect of the zonal E × B plasma drift on NmF2 and hmF2 is most substantial in the nightside ionosphere approximately from −20° to 20° geomagnetic latitude, and the neglect of this drift results in an up to 2.4-fold underestimation of NmF2. The found dependence of the effect of the zonal E × B plasma drift on NmF2 and hmF2 on geomagnetic latitude is related to the longitudinal asymmetry of B, asymmetry of the neutral wind about the geomagnetic equator, and changes in the meridional E × B plasma drift at a change in geomagnetic longitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. N. Anderson, “A Theoretical Study of the Ionospheric F Region Equatorial Anomaly—II. Results in the American and Asian Sectors,” Planet. Space Sci. 21(3), 421–442 (1973b).

    Article  Google Scholar 

  2. D. N. Anderson, “A Theoretical Study of the Ionospheric F Region Equatorial Anomaly—I. Theory,” Planet. Space Sci. 21(3), 409–419 (1973a).

    Article  Google Scholar 

  3. D. N. Anderson, “Modeling the Ambient, Low Latitude F Region Ionosphere—A Review,” J. Atmos. Terr. Phys. 43(8), 753–762 (1981).

    Article  Google Scholar 

  4. G. J. Bailey and N. Balan, Handbook of Ionospheric Models, Ed. by R. W. Schunk (Utah State Univ., Logan, 1996), pp. 173–206.

    Google Scholar 

  5. M. G. Deminov and Ya. A. Fishchuk, “On the Use of the Geomagnetic Field Approximation by the Eccentric Dipole in Problems of Ionosphere and Plasmasphere Modeling,” Genomagn. Aeron. 40(3), 119–220 (2000) [Geomagn. Aeron. 40, 383–387 (2000)].

    Google Scholar 

  6. J. R. Dudeney, “The Accuracy of Simple Methods for Determining the Height of the Maximum Electron Concentration of the F2 Layer from Scaled Ionospheric Characteristics,” A. Atmos. Terr. Phys. 45(2/3), 629–640 (1983).

    Article  Google Scholar 

  7. B. G. Fejer and L. Scherliess, “On the Variability of Equatorial F Region Vertical Plasma Drifts,” J. Atmos. Solar.-Terr. Phys. 63(9), 893–897 (2001).

    Article  Google Scholar 

  8. B. G. Fejer, “F Region Plasma Drifts over Arecibo-Solar Cycle, Seasonal, and Magnetic Activity Effects,” J. Geophys. Res. 98, 13 645–13 652 (1993).

    Google Scholar 

  9. B. G. Fejer, D. T. Farley, S. A. Gonzalez, et al., “F Region East-West Drifts at Jicamarca,” J. Geophys. Res. 86(1), 215–218 (1981).

    Google Scholar 

  10. B. G. Fejer, S. A. Gonzalez, E. R. de Paula, and R. F. Woodman, “Average Vertical and Zonal F Region Plasma Drifts over Jicamarca,” J. Geophys. Res. 96, 13901–13906 (1991).

    Google Scholar 

  11. A. C. Fraser-Smith, “Centered and Eccentric Geomagnetic Dipoles and Their Poles, 1600–1985,” Rev. Geophys. 25(1), 1–16 (1987).

    Google Scholar 

  12. A. E. Hedin, N. W. Spencer, M. A. Biondi, et al., “Revised Global Model of Thermosphere Winds Using Satellite and Ground-Based Observations,” J. Geophys. Res. 96, 7657–7681 (1991).

    Article  Google Scholar 

  13. A. I. Kashirin, “Photoionization in the Nighttime Ionosphere,” Geomagn. Aeron. 26(4), 563–568 (1986).

    Google Scholar 

  14. N. L. Maynard, T. L. Aggson, F. A. Herrero, et al., “Average Equatorial Zonal and Vertical Ion Drifts Determined from San Marco D Electric Field Measurements,” J. Geophys. Res. 100, 17 467–17 479 (1995).

    Google Scholar 

  15. G. H. Millward, R. J. Moffett, S. Quegan, and T. J. Fuller-Rowell, Handbook of Ionospheric Models, Ed. by R. W. Schunk (Utah State Univ., Logan, 1996), pp. 239–279.

    Google Scholar 

  16. A. A. Namgaladze, Iu. N. Korenikov, V. V. Klimenko, et al., “Global Model of the Thermosphere-Ionosphere-Protonosphere System,” Pure and Appl. Geophys. 127(2/3), 219–254 (1988).

    Article  Google Scholar 

  17. A. V. Pavlov, “New Method in Computer Simulations of Electron and Ion Densities and Temperatures in the Plasmasphere and Low-Latitude Ionosphere,” Ann. Geophys. 21(7), 1601–1628 (2003).

    Article  Google Scholar 

  18. A. V. Pavlov, “The Role of the Zonal E × E Plasma Drift in the Low Latitude Ionosphere at High Solar Activity near Equinox from a New Three-Dimensional Theoretical Model,” Ann. Geophys. 24(10), 2553–2572 (2006).

    Google Scholar 

  19. A. V. Pavlov, S. Fukao, and S. Kawamura, “Comparison of the Measured and Modeled Electron Densities and Electron and Ion Temperatures in the Low Latitude Ionosphere during 19–21 March 1988,” Ann. Geophys. 22(8), 2747–2763 (2004a).

    Google Scholar 

  20. A. V. Pavlov, S. Fukao, and S. Kawamura, “F Region Ionospheric Perturbations in the Low-Latitude Ionosphere during the Geomagnetic Storm of 25–27 August 1987,” Ann. Geophys. 22(10), 3479–3501 (2004b).

    Google Scholar 

  21. J. M. Picone, A. E. Hedin, D. P. Drob, and A. C. Aikin, “NRLMSISE-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues,” J. Geophys. Res. 107(12), 1468 (2002).

    Article  Google Scholar 

  22. P. G. Richards, J. A. Fennelly, and D. G. Torr, “EUVAC: A Solar EUV Flux Model for Aeronomical Calculations,” J. Geophys. Res. 99(5), 8981–8986 (1994).

    Article  Google Scholar 

  23. H. Rishbeth, “The Equatorial F Layer: Progress and Puzzles,” Ann. Geophys. 18(7), 730–739 (2000).

    Article  Google Scholar 

  24. L. Scherliess and B. G. Fejer, “Radar and Satellite Global Equatorial F Region Vertical Drift Model,” J. Geophys. Res. 104, 6829–6842 (1999).

    Article  Google Scholar 

  25. R. Sheehan and C. Valladares, “Equatorial Ionospheric Zonal Drift Model and Vertical Drift Statistics from UHF Scintillation Measurements in South America,” Ann. Geophys. 22(9), 3177–3193 (2004).

    Google Scholar 

  26. T. Shimazaki, “World-Wide Variations in the Height of the Maximum Electron Density of the Inospheric F2 Layer,” J. Radio Res. Labs. Japan 2(7), 85–97 (1955).

    Google Scholar 

  27. J. E. Titheridge, “Model Results for the Ionospheric E Region: Solar and Seasonal Changes,” Ann. Geophys. 15(1), 63–78 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Pavlov, N.M. Pavlova, 2007, published in Geomagnetizm i Aeronomiya, 2007, Vol. 47, No. 5, pp. 659–673.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlov, A.V., Pavlova, N.M. Effect of zonal E × B plasma drift on electron density in the low-latitude ionospheric F region at a solar activity maximum near vernal equinox. Geomagn. Aeron. 47, 621–635 (2007). https://doi.org/10.1134/S0016793207050118

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793207050118

PACS numbers

Navigation