Skip to main content
Log in

Features of the planetary distribution of auroral precipitation characteristics during substorms

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

A planetary pattern of substorm development in auroral precipitation has been constructed on the basis of the F6 and F7 satellite observations. The behavior of the auroral injection boundaries and characteristics of precipitating electrons in various precipitation regions during all phases of a statistically mean magnetospheric substorm with an intensity of AL ∼ −400 nT at a maximum is considered in detail. It is shown that during a substorm, the zone of structured auroral oval precipitation AOP and the diffuse auroral zone DAZ are the widest in the nighttime and daytime sectors, respectively. In the daytime sector, all precipitation regions synchronously shift equatorward not only at the origination phase but during the substorm development phase. The strongest shift to low latitudes of the daytime AOP region is observed at a maximum of the development phase. As a result of this shift, the area of the polar cap increases during the phases of substorm origination and development. It is shown that the average position of the precipitation boundaries and the energy fluxes of precipitating electrons at each phase are linearly related to the intensity of a magnetic disturbance. This makes it possible to develop a model of auroral precipitation development during each phase of substorms of any intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.-I. Akasofu, “Midday Auror as at the South Pole during Magnetospheric Substroms,” J. Geophys. Res. 77, 2303–2309 (1972).

    Google Scholar 

  2. S.-I. Akasofu, “The Development of Auroral Substorm,” Planet. Space Sci. 19, 273–284 (1964).

    Article  Google Scholar 

  3. S.-I. Akasofu, C.-I. Meng, and D. S. Kimball, “Dynamics of Aurora. 4. Polar Magnetic Substorm and Westward Traveling Surge,” J. Atmos. Terr. Phys. 28, 489–496 (1966).

    Article  Google Scholar 

  4. S.-I. Akasofu, C.-I. Meng, and K. Makita, “Changes of the Size of Open Field Line Region during Substorm,” Planet. Space Sci. 40, 1513–1524 (1992).

    Article  Google Scholar 

  5. S.-I. Akasofu, M. Roederer, G. K. Corrik, and D. N. Covey, “Equatorward Shift of the Cusp during Magnetospheric Substorm,” Planet. Space Sci. 29, 317–320 (1981).

    Article  Google Scholar 

  6. S.-I. Akasofu, Physics of Magnetospheric Substorms (Reidel, Dordrecht, 1977).

    Google Scholar 

  7. M. Brittnacher, M. Fillingim, G. Parks, et al., “Polar Cap Area and Boundary Motion during Substorms,” J. Geophys. Res. 104, 12 251–12 262 (1999).

    Article  Google Scholar 

  8. J. L. Burch, “Rate of Erosion of Dayside Magnetic Flux Based on a Quantitative Study of the Dependence of Polar Cusp Latitude on the Interplanetary Magnetic Field,” Radio Sci. 8, 955–961 (1973).

    Google Scholar 

  9. J. F. Carbary, T. Sotirelis, P. T. Newell, and C.-I. Meng, “Correlation of LBH Intensities with Precipitating Particle Energies,” Geophys. Res. Lett. 31, L13801 (2004).

    Article  Google Scholar 

  10. S. A. Chernous, V. G. Vorobjev, V. R. Tagirov, et al., “Television and Photometric Observations of the Transition Region between Discrete Arcs and Pulsations in Dayside Auroras,” in Proceedings of the International Symposium on Polar Geomagnetic Disturbances and Related Phenomena “Polar Geomagnetic Phenomena of May 25–31, 1986, Suzdal’,” SSSR, 1989, pp. 46–50.

  11. N. P. Dmitrieva and V. A. Sergeev, “Spontaneous and Forced Onset of the Magnetospheric Substorm Expansion Phase and the Duration of the Substorm Preliminary Phase,” Geomagn. Aeron. 23(3), 470–474 (1983).

    Google Scholar 

  12. R. H. Eather, “Polar Cusp Dynamics,” J. Geophys. Res. 90, 1569–1576 (1985).

    Google Scholar 

  13. R. H. Eather, S. B. Mende, and E. J. Weber, “Dayside Aurora and Relevance to Substorm Current System and Dayside Merging,” J. Geophys. Res. 84, 3339–3359 (1979).

    Google Scholar 

  14. Ya. I. Feldstein and Yu. I. Galperin, “Auroral Precipitation Structure in the Nightside Sector of the Magnetosphere,” Kosm. Issled. 34, 227–247 (1996).

    Google Scholar 

  15. Ya. I. Feldstein and G. V. Starkov, “Dynamic of the Auroral Belt and Polar Geomagnetic Disturbances,” Planet. Space Sci. 15, 209–229 (1967).

    Article  Google Scholar 

  16. Ya. I. Feldstein and Yu. I. Galperin, “An Alternative Interpretation of Auroral Precipitation and Luminosity Observations from the DE, DMSP, Aurora and Viking Satellites in Terms of Their Mapping to the Nightside Magnetosphere,” J. Atmos. Terr. Phys. 55, 105–121 (1993).

    Article  Google Scholar 

  17. L. A. Frank and J. D. Craven, “Imaging Results from Dynamic Explorer 1,” Rev. Geophys. 26, 249–283 (1988).

    Google Scholar 

  18. Yu. I. Galperin and Ya. I. Feldstein, “Auroral Luminosity and Its Relationship to Magnetospheric Plasma Domains,” in Auroral Physics, Ed. by C.-I. Meng (UP, Cambridge, 1991), pp. 207–222.

    Google Scholar 

  19. G. F. Germany, G. K. Parks, M. Brittnacher, et al., “Remote Determination of Auroral Energy Characteristics during Substorm Activity,” Geophys. Res. Lett. 24, 995–998 (1997).

    Article  Google Scholar 

  20. D. A. Hardy, M. S. Gussenhoven, and D. Brautingam, “A Statistical Model of Auroral Electron Precipitation,” J. Geophys. Res. 90, 4229–4248 (1985).

    Google Scholar 

  21. T. Iijima and T. Nagata, “Signatures for the Substorm Development of the Growth Phase and Expansion Phase,” Planet. Space Sci. 20, 1095–1101 (1972).

    Article  Google Scholar 

  22. D. Ya. Ivliev, M. I. Pudovkin, and S. A. Zaitseva, “Development of Elementary Magnetic Disturbance,” Geomagn. Aeron. 10(2), 300–304 (1970).

    Google Scholar 

  23. Y. Kamide, J. L. Burch, J. D. Winingham, and S.-I. Akasofu, “Dependence of the Latitude of the Cleft on the Interplanetary Magnetic Field and Substorm Activity,” J. Geophys. Res. 81, 698–704 (1976).

    Google Scholar 

  24. K. Kauristie, “Statistical Fits for Auroral Oval Boundaries during the Substorm Sequence,” J. Geophys. Res. 100, 21 885–21 895 (1995).

    Article  Google Scholar 

  25. S. Kokubun, “Polar Substorm and Interplanetary Magnetic Field,” Planet. Space Sci. 18, 697–705 (1970).

    Google Scholar 

  26. S. Kokubun, R. L. McPherron, and C. T. Russell, “Triggering of Substroms by Solar Wind Discontnuities,” J. Geophys. Res. 82, 74–86 (1977).

    Google Scholar 

  27. L. R. Lyons, “Substorms: Fundamental Observational Features, Distinction from Other Disturbances, and External Triggering,” J. Geophys. Res. 101, 13011–13026 (1996).

    Article  Google Scholar 

  28. K. Makita, C.-I. Meng, and S.-I. Akasofu, “Temporal and Spatial Variations of the Polar Cap Dimension Inferred from Precipitation Boundaries,” J. Geophys. Res. 90, 2744–2752 (1985).

    Google Scholar 

  29. Yu. P. Maltsev, “Search of Relation between the Substorm Onset and the Solar Wind Parameters,” in Proceedings of the International Conference on Substorm-4, Nagoya, 1998, pp. 291–294.

  30. I. B. McDiarmid, J. R. Burrows, and E. E. Budsinski, “Average Characteristics of Magnetospheric Electrons (159 eV to 200 KeV) at 1400 km,” J. Geophys. Res. 80, 73–79 (1975).

    Google Scholar 

  31. R. L. McPherron, “Growth Phase of Magnetospheric Substroms,” J. Geophys. Res. 75(28), 5592–5599 (1970).

    Google Scholar 

  32. C.-I. Meng and K. Makita, “Dynamic Variations of the Polar Cap,” in Solar Wind-Magnetosphere Coupling, Ed. by Y. Kamide and J. A. Slavin (Sci. Terra, Tokyo, 1986), pp. 605–631.

    Google Scholar 

  33. C.-I. Meng, “Dynamic Variations of the Auroral Oval during Intense Magnetic Substroms,” J. Geophys. Res. 89, 227–235 (1984).

    Google Scholar 

  34. S. E. Milan, M. Lester, S. W. H. Cowley, et al., “Variations in the Polar Cap Area during Two Substorm Cycles,” Ann. Geophys. 21, 1121–1140 (2003).

    Article  Google Scholar 

  35. P. T. Newell and C.-I. Meng, “Ionospheric Projections of Magnetospheric Regions under Low and High Solar Pressure Conditions,” J. Geophys. Res. 99, 273–286 (1994).

    Article  Google Scholar 

  36. P. T. Newell and C.-I. Meng, “Mapping the Dayside Ionosphere to the Magnetosphere according to Particle Precipitation Characteristic,” Geophys. Res. Lett. 19, 609–612 (1992).

    Google Scholar 

  37. P. T. Newell, K. Liou, T. Sotirelis, and C.-I. Meng, “Polar Ultraviolet Imager Observations of Global Auroral Power as a Function of Polar Cap Size and Magnetotail Stretching,” J. Geophys. Res. 106, 5895–5906 (2001).

    Article  Google Scholar 

  38. P. T. Newell, S. Wing, C.-I. Meng, and V. Sigillito, “The Auroral Oval Position, Structure and Intensity of Precipitation from 1984 onward: An Automated On-Line Data Base,” J. Geophys. Res. 96, 5877–5882 (1991).

    Google Scholar 

  39. P. T. Newell, V. A. Sergeev, G. R. Bikkuzina, and S. Wing, “Characterizing the State of Magnetosphere: Testing the Ion Precipitation Maxima Latitude (b2i) and the Ion Isotropy Boundary,” J. Geophys. Res. 103, 4739–4746 (1998).

    Article  Google Scholar 

  40. P. T. Newell, Y. I. Feldstein, Yu. I. Galperin, and C.-I. Meng, “Morphology of Nightside Precipitation,” J. Geophys. Res. 101, 10 737–10 748 (1996).

    Google Scholar 

  41. L. M. Nikolaenko, Yu. I. Galperin, Ya. I. Feldstein, et al., “Diffuse Zone: VII. The Dynamics of the Equatorward Boundary of the Electron Diffuse Precipitation Zone in the Dusk Sector,” Kosm. Issled. 21, 876–884 (1983).

    Google Scholar 

  42. J. C. Samson, L. R. Lyons, B. Xu, et al., “Proton Aurora and Substorm Intensifications,” J. Geophys. Res. 19, 2167–2170 (1992).

    Google Scholar 

  43. P. E. Sandholt, A. Egeland, C. S. Deehr, et al., “Effect of Interplanetary Magnetic Field and Magnetospheric Substorm Variations on the Dayside Aurora,” Planet. Space Sci. 31, 1345–1362 (1983).

    Article  Google Scholar 

  44. P. E. Sandholt, C. S. Deehr, A. Egeland, et al., “Signatures in the Dayside Aurora of Plasma Transfer from the Magnetosheath,” J. Geophys. Res. 91, 10063–10079 (1986).

    Article  Google Scholar 

  45. V. A. Sergeev and B. D. Gvozdevsky, “MT-Index—A Possible New Index to Characterize the Magnetic Configuration of Magnetotail,” Ann. Geophys. 13, 1093–1103 (1995).

    Google Scholar 

  46. T. Sotirelis and P. T. Newell, “Boundary Oriented Electron Precipitation Model,” J. Geophys. Res. 105, 18655–18673 (2000).

    Article  Google Scholar 

  47. R. W. Spiro, P. H. Reiff, and L. J. Mahler, “Precipitating Electron Energy Flux and Auroral Zone Conductances—An Empirical Model,” J. Geophys. Res. 87, 8215–8227 (1982).

    Google Scholar 

  48. G. V. Starkov and Ya. I. Feldstein, “A Change in the Auroral Oval Zone Boundaries,” Geomagn. Aeron. 7, 62–71 (1967).

    Google Scholar 

  49. G. V. Starkov and Ya. I. Feldstein, “Substorm in Auroras,” Geomagn. Aeron. 11(3), 560–562 (1971).

    Google Scholar 

  50. G. V. Starkov, B. V. Rezhenov, V. G. Vorobjev, and Ya. I. Feldstein, “Planetary Distribution of Auroral Precipitation and Its Relation to the Zones of Auroral Luminosity,” Geomagn. Aeron. 43(5), 609–619 (2003) [Geomagn. Aeron. 43, 569–578 (2003)]

    Google Scholar 

  51. G. V. Starkov, Ya. I. Feldstein, and N. F. Shevnina, “Dayside Oval Precipitation during Substroms,” Geomagn. Aeron. 13, 86–90 (1973).

    Google Scholar 

  52. M. R. Torr, D. J. Torr, M. Zukic, et al., “Far Ultraviolet Imager for the International Solar-Terrestrial Physics Mission,” Space Sci. Rev. 71, 329–383 (1995).

    Article  Google Scholar 

  53. O. A. Troshichev, A. L. Kotikov, B. D. Bolotinskaya, and V. G. Andrezen, “Influence of the IMF Azimuthal Component on the Magnetospheric Substorm Dynamics,” J. Geomagn. Geoelectr. 38, 1075–1088 (1986).

    Google Scholar 

  54. V. G. Vorobjev and O. I. Yagodkina, “Effect of Magnetic Activity on the Global Distribution of Auroral Precipitation Zones,” Geomagn. Aeron. 45(4), 467–473 (2005) [Geomagn. Aeron. 45, 438–444 (2005)].

    Google Scholar 

  55. V. G. Vorobjev, V. L. Zverev, G. V. Starkov, and Ya. I. Feldstein, “The Dynamics of Dayside Auroras Depending on IMF and Magnetic Activity,” Geomagn. Aeron. 28(2), 251–255 (1988).

    Google Scholar 

  56. V. G. Vorobjev, G. Gustafsson, G. V. Starkov, et al., “Dynamics of Day and Night Aurora during Substorm,” Planet. Space Sci. 23, 269–278 (1975).

    Article  Google Scholar 

  57. V. G. Vorobjev, G. V. Starkov, and Ya. I. Feldstein, “The Auroral Oval during the Substorm Development,” Planet. Space Sci. 24, 955–965 (1976).

    Article  Google Scholar 

  58. V. G. Vorobjev, O. I. Yagodkina, G. V. Starkov, and Ya. I. Feldstein, “A Substorm in Midnight Auroral Precipitation,” Ann. Geophys. 21, 2271–2280 (2003).

    Article  Google Scholar 

  59. O. I. Yagodkina, V. G. Vorobjev, and S. V. Leontiev, “Pulsating Aurora and Geomagnetic Pulsations in Daytime High-Latitude Region,” Planet. Space Sci. 38, 149–159 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.G. Vorobjev, O.I. Yagodkina, G.V. Starkov, Ya.I. Feldstein, 2007, published in Geomagnetizm i Aeronomiya, 2007, Vol. 47, No. 2, pp. 206–218.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vorobjev, V.G., Yagodkina, O.I., Starkov, G.V. et al. Features of the planetary distribution of auroral precipitation characteristics during substorms. Geomagn. Aeron. 47, 193–204 (2007). https://doi.org/10.1134/S0016793207020077

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793207020077

PACS numbers

Navigation